UCAR Community Programs

Boosting diversity in Earth system science

July 7, 2016 | SOARS is soaring into its third decade, achieving results and collecting accolades along the way.

3D-printed weather stations fill gaps in developing world

BOULDER — Scientists have successfully installed the first wave of low-cost weather stations that are designed to provide critically needed information to farmers and other residents in developing countries. The stations are built largely with 3D-printed parts that can be easily replaced if they wear out in the field. They were created by weather experts at the National Center for Atmospheric Research (NCAR) and its managing entity, the University Corporation for Atmospheric Research (UCAR). The first five stations, newly installed in Zambia, are beginning to transmit information about temperature, rainfall, winds, and other weather parameters. These measurements and the resulting forecasts can provide weather information for local subsistence farmers deciding when to plant and fertilize crops. They can also alert communities about floods and other potential disasters. A newly installed weather station at the Salvation Army's College of Biomedical Sciences in Chikankata, Zambia. The sensor on the left (with the funnel) is a specially designed tipping bucket rain gauge; the vertical, vented cylinder on the vertical arm of the station is a radiation shield containing temperature, humidity, and pressure sensors; and the horizontal cylinder protruding out the back contains a single-board computer. A wind vane (left), solar light sensor (middle), and three-cup wind anemometer (right) are mounted on the upper arm.  The station is powered by a single solar panel and a backup battery. (©UCAR. Photo by Martin Steinson. This image is freely available for media & nonprofit use.) "It’s a major opportunity to provide weather information that farmers have never had before," said NCAR scientist Paul Kucera, one of the project leaders. "This can literally make the difference when it comes to being able to feed their families." The scientists will next explore the need for low-cost weather stations in other developing countries. The project is funded by the U.S. Agency for International Development's Office of Foreign Disaster Assistance and the U.S. National Weather Service. “The bottom line is that 3D-printing will help to save lives,” said Sezin Tokar, a hydrometeorologist with U.S. AID. “Not only can they provide countries with the ability to more accurately monitor for weather-related disasters, the data they produce can also help reduce the economic impact of disasters.” Lack of observations Like many developing countries, Zambia does not have detailed forecasts, partly because weather stations are scarce. The density of stations in Africa is eight times lower than recommended by the World Meteorological Organization. Building out a network can be prohibitively expensive, with a single commercial weather station often costing $10,000 to $20,000, plus ongoing funding for maintenance and replacing worn-out parts. To fill this need, UCAR and NCAR scientists have worked for years to come up with a weather station that is cheap and easy to fix, and can be adapted to the needs of the host country. The resulting stations are constructed out of plastic parts that are custom designed and can be run off a 3D printer, along with off-the-shelf sensors and a basic, credit card-sized computer developed for schoolchildren. Total cost: about $300 per station. Best of all, the host country can easily print replacement parts. "If you want a different kind of wind direction gauge or anemometer, or you just need to replace a broken part, you can just print it out yourself," said project co-lead Martin Steinson of UCAR. "Our role is to make this as accessible as possible. This is entirely conceived as an open-source project." Building out a network Working with the Zambian Meteorological Department and other agencies, Kucera and Steinson installed the first stations earlier this year—three next to radio stations that will broadcast the information to local communities, one by a rural hospital, and one by the headquarters of the meteorological department. The meteorological office will take over the project later this year, with a goal of building out a network of 100 weather stations across Zambia. They will also have the 3D printers, materials, and training to maintain or upgrade the network. The weather station measurements are accessible to local meteorologists and also transmitted over wireless networks in real time to NCAR. After all the weather stations have been installed, scientists will develop a system of one- to three-day regional forecasts for Zambia using the NCAR-based Weather Research and Forecast (WRF) computer model. The forecasts, in addition to helping farmers and other residents, can also alert the country to the threat of impending floods or other weather-related disasters. The system will ultimately be transferred to the Zambian Meteorological Department to run the forecasts. "The objective of the project is to transfer the technology so this will be run by Zambia," Kucera said. Once the technology has been established in Zambia, Kucera and Steinson will turn to other nations that need additional weather stations, such as in Africa or the Caribbean. In addition to improving local forecasts, the additional observations can eventually make a difference for forecasts globally because computer models everywhere will have additional information about the atmosphere. "We’re hearing a lot of interest in using this technology in other countries," Kucera said. "It’s really quite a return on investment." Writer:David Hosansky, Manager of Media Relations

Forecast for big data: Mostly cloudy

May 31, 2016 | The rise of big data has big implications for the advancement of science. It also has big implications for the clogging of bandwidth. The growing deluge of geoscience data is in danger of maxing out the existing capacity to deliver that information to researchers. In response, scientific institutions are experimenting with storing data in the cloud, where researchers can readily get the relatively small portion of the data they actually need. Helping blaze the way is Unidata, which partnered with Amazon Web Services last year to make Next Generation Weather Radar (NEXRAD) data from the National Oceanic and Atmospheric Administration (NOAA) available in the cloud in near real time. The project is one of the ways Unidata, a community program of the University Corporation for Atmospheric Research (UCAR), is exploring what the future of data access may look like. "One of the roles we play at Unidata is to see where the information technology world is going and monitor the new technologies that can advance science," said Unidata Director Mohan Ramamurthy. "In the last 10 years, we've watched the cloud computing environment mature. It's become robust and reliable enough that it now makes sense for the scientific community to begin to adopt it." Inside an Amazon Web Services data center. (Photo courtesy Amazon.) The data deluge Since 1984, Unidata has been delivering geoscience data in near real time to researchers who want it. Today, Unidata also offers those scientists tools they can use to analyze and visualize the data. In 2008, Unidata's servers delivered 2.7 terabytes of data a day to 170 institutions. Just five years later, the program was providing 13 terabytes—or the equivalent of about 4.5 million digital photos—a day to 263 institutions. Today, Unidata is delivering about 33 terabytes of data a day. And the volume is only expected to grow.  For example, NOAA's new weather satellite, GOES-R (Geostationary Operational Environmental Satellite R-Series), is scheduled to launch in October. When GOES-R is up and running, it alone will produce a whopping 3.5 terabytes of data a day. "We've been pushing out data for 30-plus years here at Unidata," said Jeff Weber, who is heading up Unidata's collaboration with Amazon. "What we're finding now is that the volume of available data is just getting to be too large," We can't keep putting more and more data into the pipe and pushing it out—there are physical constraints." The physical constraints are not just on Unidata's side. Many universities and other institutions that rely on Unidata do not have the local bandwidth to handle a huge increase in the incoming stream of data. To address the problem, Unidata decided a few years ago to begin transitioning its services to the cloud—a network of servers hosted on the Internet that allow you to access and process data from anywhere. The vision is to create a future where scientists could go to the cloud, access the data they need, and then use cloud-based tools to process and analyze that data. At the end of their projects, scientists would download only their finished products: a map or graph, perhaps, or the results from a statistical analysis. "With cloud computing, you can bring all your science and the analytic tools you use to the data, rather than the old paradigm of bringing the data to your tools," Ramamurthy said.  'Navigating the waters' These advantages were part of the motivation behind the U.S. Department of Commerce's announcement last spring that NOAA would collaborate with Amazon, Google, IBM, Microsoft, and the Open Commons Consortium with the goal of "unleashing its vast resources of environmental data" using cloud computing. A NEXRAD data product available to researchers through Unidata. (Image courtesy Unidata.) Amazon Web Services was one of the first out of the gate on the NOAA Big Data Project, uploading the full archive of NEXRAD data to the cloud last summer. But to figure out how to continue to feed the archive with near real time observations and to help make sense of the data — how people might want to use it and what kinds of tools they would need — Amazon turned to Unidata. "It made a lot of sense for Unidata to partner with Amazon and vice versa," Ramamurthy said. "They wanted expertise in atmospheric science data. We wanted an opportunity to introduce cloud-based data services to our community and raise awareness about what it can do." The scientific community is perhaps more hesitant to rely on the cloud than other user groups. Datasets are the lifeblood of many research projects, and knowing that the data are stored locally offers a sense of security for many scientists, Ramamurthy said. Losing access to some data could nullify years of work. But the truth is that the data are likely more secure in the cloud than on a local hard drive, Ramamurthy said. "Mirroring" by multiple cloud servers means that data are always backed up. If the Amazon project, and the NOAA Big Data Project in general, are successful in winning scientists over, it could go a long way toward helping Unidata make its own transition to the cloud. Unidata will be studying and learning from the project – including how to make a business model that will work -- with an eye toward its own future. "We're navigating the waters to find out what works and what doesn't so we can report back to the National Science Foundation," Weber said. "We want to see how this paradigm shift might play out — if it makes sense, if it doesn't, or if it makes sense in a few ways but not others." Writer/contactLaura Snider, Senior Science Writer and Public Information Officer

UCAR to support EarthCube: Cyberinfrastructure will advance science

BOULDER – EarthCube, a landmark initiative to develop new technological and computational capabilities for geosciences research, will be supported by the University Corporation for Atmospheric Research (UCAR) under a new agreement with the National Science Foundation (NSF). Created by NSF in 2011, EarthCube aims to help researchers across the geosciences from meteorology to seismology better understand our planet in ways that can strengthen societal resilience to natural events. More than 2,500 EarthCube contributors – including scientists, educators, and information professionals – work together on the creation of a common cyberinfrastructure for researchers to collect, access, analyze, share, and visualize all forms of data and related resources. "EarthCube offers the promise to advance geoscience research by creating and delivering critical new capabilities,” said UCAR scientist Mohan Ramamurthy, principal investigator and project director of the new EarthCube office at UCAR. "This is a great opportunity for UCAR to leverage its successful track record in managing large scientific projects that advance our understanding of the planet," said Michael Thompson, interim UCAR president. "The EarthCube project offers the potential to significantly benefit society by helping scientists use the power of diverse big datasets to better understand and predict the natural events, from severe storms to solar disturbances, that affect all of us." EarthCube is designed to foster collaborations across the geosciences. The technology helps scientists in different disciplines better understand the far-reaching influences of natural events, such as how major storms like Sandy (above) affect coastal and inland flooding. This unique view of Sandy was generated with NCAR's VAPOR visualization software, based on detailed computer modeling. (©UCAR. Visualization by Alan Norton, NCAR, based on research by NCAR scientists Mel Shapiro and Thomas Galarneau. This image is freely available for media & nonprofit use. Click here for higher resolution.) UCAR will administer the day-to-day operations of EarthCube under the three-year, $2.8 million agreement with NSF. The EarthCube science support office, currently funded through an NSF grant to the Arizona Geological Survey in Tucson, Arizona, will move to UCAR's Boulder offices starting this month. EarthCube is designed to help researchers across the geosciences address the challenges of understanding and predicting the complexity of the Earth system, from the geology and topography to the water cycle, atmosphere, and space environment of the planet. This approach is critical for improved understanding of the environment and better safeguarding society. In order to better predict the potential effects of a landfalling hurricane on inland mudslides, for example, scientists from multiple disciplines, including meteorology, hydrology, geography, and geology, need a common platform to work together to collect observations, ingest them into advanced computer models of the Earth system, and analyze and interpret the resulting data. "The EarthCube Science Support Office will help us find and share the data geoscientists collect and use to answer critical science questions about the Earth," said Eva Zanzerkia, program director in NSF’s Division of Earth Sciences. Ramamurthy said UCAR is well positioned to help EarthCube meet its goals, since UCAR provides technological support to the geosciences community, including its 109 member universities. UCAR has been involved with EarthCube since NSF launched the initiative. "Currently researchers are spending an enormous amount of time on routine tasks because there is no data system, database, or data infrastructure where they can get all the information they need in some kind of a uniform way from a single interface," Ramamurthy said. "If EarthCube can facilitate the integration of data from multiple domains in a way that is easier and faster, and if there is interoperability in terms of standards for data to be input into a common environment, then integration becomes more easily possible." UCAR is a nonprofit consortium of more than 100 member colleges and universities focused on research and training in the atmospheric and related Earth system sciences. UCAR’s primary activity is managing the National Center for Atmospheric Research (NCAR) on behalf of NSF, NCAR’s sponsor. UCAR also oversees a variety of education and scientific support activities under the umbrella of the UCAR Community Programs, which will administer EarthCube.

NCAR to open multimedia exhibit on climate change

BOULDER – The National Center for Atmospheric Research (NCAR) next month is unveiling a major new exhibit about climate change. The multimedia displays at NCAR’s Mesa Lab will constitute what is believed to be the region’s largest permanent exhibit dedicated to climate change.  It will highlight the workings of our climate system, how scientists study it, and the potential impacts of warming temperatures and altered precipitation patterns on society and the environment. “Our goal is to provide the public with an engaging and scientifically accurate forum to learn about climate change, which is perhaps the signature environmental challenge of our time,” said Becca Hatheway, exhibits manager at the University Corporation for Atmospheric Research, which manages NCAR. The touchscreens, audio recordings, activities, and artistically designed panels will entirely replace a more text-oriented exhibit that dated from 2003. This artist's rendition highlights part of the climate exhibit. The first section of the exhibit (right) provides an overview of Earth's climate system. The interactive display (left) allows visitors to explore how future levels of greenhouse gas emissions will affect heat waves. (Illustration by Condit Exhibits.) Although climate change can be a grim subject, the exhibit also aims to leave visitors with a sense of hope. It includes a major section that helps guide visitors through choices they can make, such as consuming less electricity or gas, which can have implications for climate change.  “We don’t want visitors leaving the exhibit feeling nothing but doom and gloom,” Hatheway said. The exhibit, housed in NCAR’s landmark Mesa Lab in south Boulder, will be free to the public. The Mesa Lab draws about 100,000 visitors a year to its exhibits on weather, the Sun, supercomputing, and other topics related to the atmospheric sciences. From climate basics to choosing our future The exhibit will be divided into five sections, each designed with input from NCAR scientists. The sections provide an overview of our climate system, the influence of greenhouse gases, the techniques that scientists use to study climate, the impacts of climate change on society and ecosystems, and strategies for reducing our carbon footprint and adapting to a changing climate. One of the highlights is an interactive exhibit called “Shifting the Weather Odds.” Using balls that drop into different slots, visitors will be able to see how higher emissions of greenhouse gases will lead to extreme heat waves occurring more frequently. Another interactive exhibit, “Choose our Future,” will enable visitors to select activities such as the use of lower-carbon building materials and see how that would affect global temperatures by century’s end. In addition, the exhibit will feature a touchscreen with “Community Stories”—recordings of people across the country sharing observations about local climate change and what they're doing about it. Visitors eventually will be able to upload their own stories. “It’s really important to have these first-person accounts,” Hatheway said. “Climate change is something that affects all of us in different ways.” Exhibits manager Becca Hatheway examines new climate displays.(©UCAR. Photo by David Hosansky. This photo is freely available for media & nonprofit use.) Condit Exhibits is building and installing the exhibit. NCAR Senior Scientist Jeffrey Kiehl, who provided guidance during the planning process, said the exhibit can help adults and children alike learn more about climate change. “This is a wonderful project," he said. "It not only conveys the scientific seriousness of climate change, but perhaps more importantly shows some of the ways we can take on the challenge of addressing the issue.” Explore climate online Climate Learning Zone (UCAR Center for Science Education)

On display: climate change and hope

May 4, 2016 | The realities of climate change can test our optimism. The new Mesa Lab climate exhibit, which is being installed this month, aims to leave visitors with a sense of hope.

“We’re excited to include a major section that emphasizes what people can do about climate change in their personal choices, such as driving less or making their homes more energy efficient,” said Becca Hatheway, exhibits manager for the UCAR Center for Science Education (SciEd). “We didn’t want visitors leaving the exhibit feeling nothing but doom and gloom."

Our People - Dan Burge

April 21, 2016 | An administrative assistant at UCP's Visiting Scientist Programs, Dam Burge is known around the office for being warm and friendly. At a holiday party last year, he dressed as Elf, comedian Will Ferrell's warm and friendly movie character. The 35-year-old Burge has also served four tours as a Marine and one as an Army reserve, and this spring he's headed for another deployment.

Helping postdocs find their own path

| Postdoctoral researchers have a lot of specialized scientific knowledge. But transitioning into the next phase of life can be daunting.

With that challenge in mind, nearly 70 National Science Foundation geoscience postdocs from around the country received tailored career development services last week at a first-of-its-kind workshop hosted by NCAR/UCAR.

The 2 1/2-day workshop included expert-led sessions on career management, work-life balance, proposal writing, communication, job interviewing, and salary negotiation.

Denver/Boulder AMS Chapter - Colorado Climate Trivia Night!

The Denver Boulder Chapter of the American Meteorological Society proudly presents an evening of Colorado climate trivia with Colorado's State Climatologist, Nolan Doesken. Have you ever wondered where our historic climate data comes from? Do you have questions about how official records are compiled and what role volunteers play? Perhaps you already consider yourself a Colorado climate expert and want to use that knowledge to win prizes? Either way you can join us for Colorado Climate Trivia Night!

COSMIC turns 10: Microsatellites reveal atmospheric properties in 3D

A constellation of six small satellites — rocketed into space a decade ago — has made outsized contributions to our ability to forecast severe weather events, track climate change, and understand space weather. April 15 at 01:40 UTC marks the 10-year anniversary of the launch of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). The project is a partnership between Taiwan, where it is called FORMOSAT-3, and the United States. Over its lifetime, COSMIC has proven to be an extremely cost-effective way to gather an abundance of atmospheric data, including three-dimensional profiles of temperature, humidity, and pressure, as well as electron density in the ionosphere. The broadcast by Taiwan's National Space Organization showing the launch of COSMIC in April 2006.  "The results have been outstanding," said Rick Anthes, one of COSMIC's founding scientists and president emeritus of the University Corporation for Atmospheric Research (UCAR), which manages COSMIC in the U.S. "COSMIC has significantly improved weather prediction and expanded our knowledge of the atmosphere around the world. It has exceeded all expectations." In fact, COSMIC has been such a success that the two countries are collaborating on a follow-on mission, known as COSMIC-2 in the U.S. and FORMOSAT-7 in Taiwan. "I am pleased to say that FORMOSAT-3/COSMIC has much exceeded the original planned 2-year mission goal and continues to operate into the 10-year anniversary and beyond," said Guey-Shin Chang, director general of Taiwan's National Space Organization. "FORMOSAT-7/COSMIC-2 is moving along very well and is on target to launch the first six satellites within a year to replace the decaying COSMIC satellites." A second set of six satellites is scheduled to launch in 2019. A fruitful partnership The roots of COSMIC stretch back half a century and across tens of millions of miles to NASA's Mariner 4 mission to Mars. The mission, launched in 1965, was the first to use a technique known as radio occultation to probe a planet's atmosphere. Radio occultation measures the degree to which a radio signal bends and slows as it passes through the atmosphere — the greater the bend and delay, the denser the atmosphere. Receivers on the COSMIC satellites measure the bend and delay of radio signals emitted by GPS satellites to infer information about the atmosphere. Image courtesy of the COSMIC Program. Click to enlarge. NASA went on to use the technique to explore the atmospheres of several other planets, but radio occultation was not used to gather information about our own atmosphere until three decades later. A UCAR radio occultation experiment named GPS/MET changed that. Launched on a single satellite in 1995, GPS/MET demonstrated for the first time that the radio signals already being sent out by existing GPS satellites could be harnessed to record Earth's atmospheric density, a measurement that can be further broken down into information about temperature, humidity, and pressure.  The success of that proof-of-concept experiment fueled interest in launching a constellation of small, relatively inexpensive satellites that could provide similar measurements, but many more of them and over the entire globe. To turn the idea into a reality, UCAR partnered with Taiwan's National Space Organization.  "They really set an example for how a satellite project should be executed," said Ying-Hwa "Bill" Kuo, the longtime director of UCAR's COSMIC Program. "The budget was really tight, but they were very disciplined and were able to complete the project on time and without cost overruns." Each finished COSMIC satellite looks like an oversized pancake with two flipped up solar panels and weighs about 140 pounds. The budget for COSMIC, including the first two years of operation, was $100 million. Taiwan covered 80 percent of the cost. In the United States, the leading sponsor of the project is the National Science Foundation (NSF). Other U.S. partners include the National Oceanic and Atmospheric Administration, the Air Force, the Office of Naval Research, and NASA, which developed the radio occultation receivers used on the satellites. "Unlike most proposed projects where less is achieved than is promised, COSMIC produced much more than proposed and even expected by its proponents," said Jay Fein, who managed COSMIC for NSF when the project was coming together. "Many people and institutions helped to make COSMIC an extraordinary success." A COSMIC microsatellite during testing. Just over 6 inches deep, the satellite contains a GPS occultation transmitter, a Tiny Ionospheric Photometer, and a tri-band beacon to relay data to ground stations. Photo still from video. Photo courtesy of Taiwan's National Space Organization. A wealth of data After a successful launch, the data came flooding back from COSMIC. The constellation took more than 2,500 soundings — vertical profiles of the atmosphere — per day globally. Instantly, these high-quality data were provided free of charge in real time to atmospheric researchers and forecasters around the world, who wasted little time taking advantage of them. “We have been integrating COSMIC-1 data into our numerical weather prediction models since 2007,” said Louis W. Uccellini, director of NOAA’s National Weather Service. “Its unique characteristics of high accuracy and vertical resolution complement other satellite observations used in the models. With the recent upgrade of our supercomputers, we're now able to process more data than ever, including the increased observations expected from COSMIC-2 next year." At its peak, COSMIC was among the top five observing systems in the world when measured by ability to boost the accuracy of numerical weather predictions, according to studies by the European Centre for Medium-Range Weather Forecasts and other international weather prediction centers. "COSMIC has conclusively demonstrated the scientific and practical value of radio occultation and established the technique as an essential part of the future global observing system," Anthes said. Accurate and precise Not only has COSMIC provided a huge volume of atmospheric observations, but those observations have also proven to be highly accurate — so much so that COSMIC data have been used over the past decade to uncover and correct instrument bias in other types of satellite observations. These biases arise as satellite sensors that detect microwave and infrared radiation degrade over time due to relentless exposure to the Sun's rays.  Scientists also have found that data collected by COSMIC are especially useful for forecasting tropical cyclones, including typhoons and hurricanes. COSMIC is able to provide critical observations of water vapor, the fuel that drives tropical cyclones, in high vertical resolution, which means scientists can determine how much water is present at what height in the atmosphere. Other observing systems over the oceans — as well as weather prediction models — often underestimate reservoirs of moisture stored in the lower troposphere, the layer of the atmosphere closest to Earth's surface where tropical cyclones form. COSMIC, on the other hand, provides valuable information to weather prediction models on how much water is available to fuel a forming cyclone.  The upcoming launch of the first phase of COSMIC-2 will increase radio occultation measurements over the tropics, where typhoons and hurricanes are born. "COSMIC-2 has the potential to revolutionize tropical cyclone forecasts," said Kuo, who is now the director of UCAR Community Programs. "Not only will COSMIC-2 provide more data from the tropics, but the data will be higher quality as well, thanks to an improved antenna on the new satellites." More than 140 scientists, engineers, and other experts in radio occultation and its use from 20 countries are gathering in Taiwan for an international conference in Taipei from March 9-11 to celebrate the 10th anniversary of the launch. 


Subscribe to UCAR Community Programs