NCAR

Eclipse science along the path of totality

BOULDER, Colo. — Leading U.S. solar scientists today highlighted research activities that will take place across the country during next month's rare solar eclipse, advancing our knowledge of the Sun's complex and mysterious magnetic field and its effect on Earth's atmosphere.Experts at the National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and National Center for Atmospheric Research (NCAR) provided details at this morning's press conference about the array of technologies and methodologies that will be used to obtain unprecedented views of the Sun on Aug. 21. The experiments, led by specialized researchers, will also draw on observations by amateur skywatchers and students to fill in the picture."This total solar eclipse across the United States is a fundamentally unique opportunity in modern times, enabling the entire country to be engaged with modern technology and social media," said Carrie Black, an associate program director at NSF who oversees solar research. "Images and data from potentially as many as millions of people will be collected and analyzed by scientists for years to come."Total solar eclipse over India in 1980. (©UCAR, High Altitude Observatory. This image is freely available for media & nonprofit use.)"This is a generational event," agreed Madhulika Guhathakurta, NASA lead scientist for the 2017 eclipse. "This is going to be the most documented, the most appreciated eclipse ever."The scientific experiments will take place along the path of totality, a 70-mile wide ribbon stretching from Oregon to South Carolina where the moon will completely cover the visible disk of the Sun. Depending on the location, viewers will get to experience the total eclipse for as long as 2 minutes and 40 seconds. It will take about an hour and a half for the eclipse to travel across the sky from the Pacific Coast to the Atlantic.NASA and other organizations are reminding viewers to take eye safety precautions because it is not safe to look at the Sun during an eclipse.For scientists, the celestial event is a rare opportunity to test new instruments and to observe the elusive outer atmosphere of the Sun, or solar corona, which is usually obscured by the bright surface of the Sun. Many scientific questions focus on the corona, including why it is far hotter than the surface and what role it plays in spewing large streams of charged particles, known as coronal mass ejections, that can buffet Earth's atmosphere and disrupt GPS systems and other sensitive technologies.Black noted that the moon will align exactly with the Sun's surface, which will enable observations of the entire corona, including very low regions that are rarely detectable. Obtaining observations from the ground is particularly important, she explained, because far more data can be transmitted than would be possible from space-based instruments."The moon is about as perfect an occulter as one can get," she said. "And what makes this an even more valuable opportunity is that everyone has access to it."In addition to training ground-based instruments on the Sun, scientists will also deploy aircraft to follow the eclipse, thereby increasing the amount of time they can take observations.An NCAR research team, for example, will use the NSF/NCAR Gulfstream-V research aircraft to take infrared measurements for about four minutes, helping scientists better understand the solar corona's magnetism and thermal structure. Scientists with the Southwest Research Institute in Boulder will use visible and infrared telescopes on NASA's twin WB-57 airplanes in a tag-team approach, enabling them to get a unique look at both the solar corona and Mercury for about eight minutes. The goal is to better understand how energy moves through the corona as well as learning more about the composition and properties of Mercury's surface.Scientists will also study Earth's outer atmosphere during the eclipse. The ionosphere is a remote region of the atmosphere containing particles that are charged by solar radiation. Disturbances in the ionosphere can affect low-frequency radio waves. By blocking energy from the Sun, the eclipse provides scientists with an opportunity to study the ionosphere's response to a sudden drop in solar radiation.For example, a Boston University research team will use off-the-shelf cell phone technology to construct a single-frequency GPS array of sensors to study the ionospheric effects of the eclipse. This project could lay the foundation for using consumer smartphones to help monitor the outer atmosphere for disturbances, or space weather events, caused by solar storms. Another experiment, run by researchers at the University of Virginia and George Mason University, will use transmitters broadcasting at low frequencies to probe the response of regions of the ionosphere, while a Virginia Tech team will use a network of radio receives and transmitters across the country to observe the ionosphere's response during the eclipse.Citizen scientists also are expected to play a major role in taking valuable observations during the eclipse."This is a social phenomenon, and we have a significant opportunity to promote this and do all the science that we can," Guhathakurta said.The Citizen Continental-America Telescopic Eclipse (CATE) Experiment by the National Solar Observatory, for example, will rely on volunteers from universities, high schools, informal education groups, and national labs for an eclipse "relay race." Participants spaced along the path of totality will use identical telescopes and digital camera systems to capture high-quality images that will result in a dataset capturing the entire, 93-minute eclipse across the country. And a project led by the University of California Berkeley will assemble a large number of solar images, obtained by students and amateur observers along the eclipse path to create educational materials as part of the Eclipse Megamovie project."As these projects show, the eclipse will place the Sun firmly in the forefront of the national eye," said Scott McIntosh, director of NCAR's High Altitude Observatory. "This is a unique opportunity to communicate the fact that our star is complex, beautiful, and mysterious. At the same time, it is more critical than ever to study it, as solar activity can pose significant threats to our technologically driven society." 

NCAR to take rare infrared measurements during solar eclipse

July 20, 2017 | Scientists at the National Center for Atmospheric Research (NCAR) plan to use the total eclipse on Aug. 21 to comprehensively measure, for the first time, the infrared radiation streaming out from the Sun's corona. The results could help researchers better understand the structure and evolution of the Sun's mysterious and chaotic magnetic fields. When the moon slides directly between the Earth and the Sun, turning day to twilight for a few precious minutes across a swath of the United States, NCAR scientists will point specialized instruments — mounted onboard a research aircraft as well as deployed on the ground — directly at the Sun. With the blinding light from the Sun's face temporarily blocked, the instruments can characterize how certain wavelengths of infrared radiation are affected by the Sun's magnetic fields."The Sun has never been properly surveyed in the infrared," said NCAR scientist Phil Judge, who is leading NCAR's research effort. "So the Aug. 21 eclipse offers us an almost ideal opportunity to observe something entirely new."NCAR will use the August 2017 total solar eclipse to comprehensively measure, for the first time, the infrared radiation streaming out from the Sun's corona. (The pre-2017 eclipse image shown here is courtesy NASA).NCAR will be using four instruments to study the Sun during the eclipse: two spectrometers that measure emissions of infrared radiation and two cameras that will image light in the near infrared and visible spectrums. The images from the cameras will provide valuable reference data that the scientists can use to benchmark their infrared measurements.The experiments are a few among many being funded by the National Science Foundation and NASA to allow scientists in the United States to take advantage of the solar eclipse to expand their understanding of the Sun.Chasing the eclipse in the sky The Airborne Infrared Spectrometer (AIR-Spec), built by colleagues at Harvard, will observe the eclipse from onboard the NSF/NCAR Gulfstream-V (G-V) research aircraft.The G-V will start its flight in southeast Missouri and then position itself to chase the eclipse at more than 500 miles per hour across southwestern Kentucky before landing in Tennessee. The flight will stretch the amount of time the eclipse would be visible from 2 minutes and 40 seconds for someone on the ground in Kentucky to about 4 minutes.The G-V will be flying more than 40,000 feet above the ground."The airplane gets the instrument above the clouds and the weather," Judge said. "It also gets it above the water vapor in the atmosphere, which can be a problem for observing in the infrared spectrum." But mounting an astronomical instrument that must be aimed very precisely on an airplane, which can bounce around as it travels through turbulent air, is also a challenge. For this experiment, Harvard doctoral student Jenna Samra has led the construction of a stabilizing pointing platform, which will be useful long after the eclipse is over because it will allow a wide range of telescopes to be used onboard the G-V in the future.In preparation for observing the eclipse, the research team has flown practice flights, chasing the moon on occasions when it travels across the sky on the same trajectory as it will during the eclipse."This is a one-shot deal. If you get it wrong, you don't get another opportunity for years," Judge said. "So we have worked to be as prepared as possible."Observing the eclipse from the ground Before the G-V lifts off in Missouri, NCAR scientists under the eclipse path in Wyoming will also be attempting to observe the Sun's corona. Scientists plan to drive three instruments from Boulder, Colorado, north to Casper Mountain in Wyoming.Like the AIR-Spec instrument flying on the G-V, the spectrometer on the ground is designed to observe light in the infrared spectrum, and scientists hope the measurements will complement and validate those taken in the air. The spectrometer, originally built by NCAR scientist Jim Hannigan as a prototype for another scientific mission, is being repurposed to study the eclipse. Researchers have spent months tuning the instrument to optimize its ability to capture the faint infrared emissions coming from the solar corona."We know the instrument works, fundamentally — it acquires a signal in the infrared," said NCAR engineer Scott Sewell. "But will it be sensitive enough to measure what we think are probably pretty small emission lines from the Sun? That's the question. We have explored different amplifying materials, and we plan to test it on the Moon, but we'll have to wait until Aug. 21 to know for sure."The research team — which includes students Alyssa Boll (Colorado School of MInes) and Keon Gibson (Jackson State University) as well as NCAR scientists Paul Bryan and Steve Tomczyk — will also set up two cameras in Wyoming on sophisticated tripods designed for telescopes.The two cameras are a thermal infrared camera on loan from the FLIR Corporation and a PolarCam from 4D Corporation that captures wavelengths of light visible to the human eye. The images, taken at  the same place and time as the measurements from the infrared spectrometer, will provide a reference dataset to put the infrared findings in context.If the NCAR measurements of infrared light reveal important clues about the structure of the Sun's magnetic fields, the experiments could help build a case for funding the construction of a coronagraph that can measure infrared emissions.Coronagraphs are telescopes that essentially create permanent eclipses by blocking the Sun's face with an artificial disk. While there are coronagraphs installed across the globe, including at NCAR's Mauna Loa Solar Observatory in Hawaii, none currently measure emissions in the far infrared. "The eclipse allows you — through a quirk of nature — to study for a brief period that far, far piece of infrared," said Scott McIntosh, director of NCAR's High Altitude Observatory. "If the results are interesting, it could justify the expense of building a dedicated coronagraph."Writer/contact:Laura Snider, Senior Science Writer

UCAR collaboration with The Weather Company to improve weather forecasts worldwide

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) today announced a new collaboration with The Weather Company, an IBM business, to improve global weather forecasting. The partnership brings together cutting-edge computer modeling developed at the National Center for Atmospheric Research (NCAR) with The Weather Company's meteorological science and IBM's advanced compute equipment."This is a major public-private partnership that will advance weather prediction and generate significant benefits for businesses making critical decisions based on weather forecasts," said UCAR President Antonio J. Busalacchi. "We are gratified that taxpayer investments in the development of weather models are now helping U.S. industries compete in the global marketplace."UCAR, a nonprofit consortium of 110 universities focused on research and training in the atmospheric and related Earth system sciences, manages NCAR on behalf of the National Science Foundation.With the new agreement, The Weather Company will develop a global forecast model based on the Model for Prediction Across Scales (MPAS), an innovative software platform developed by NCAR and the Los Alamos National Laboratory.The Model for Prediction Across Scales (MPAS) enables forecasters to combine a global view of the atmosphere with a higher-resolution view of a particular region, such as North America. (@UCAR. This image is freely available for media & nonprofit use.)MPAS offers a unique way of simulating the global atmosphere while providing users with more flexibility when focusing on specific regions of interest. Unlike traditional three-dimensional models that calculate atmospheric conditions at multiple points within a block-shaped grid, it uses a hexagonal mesh resembling a honeycomb that can be stretched wide in some regions and compressed for higher resolution in others. This enables forecasters to simultaneously capture far-flung atmospheric conditions that can influence local weather, as well as small-scale features such as vertical wind shear that can affect thunderstorms and other severe weather.Drawing on the computational power of GPUs — graphics processing units — such as those being used in a powerful new generation of IBM supercomputers, and on the expertise of NCAR and The Weather Company, the new collaboration is designed to push the capabilities of MPAS to yield more accurate forecasts with longer lead times. The results of NCAR's work will be freely available to the meteorological community. Businesses, from airlines to retailers, as well as the general public, stand to benefit.Mary Glackin, head of weather science and operations for The Weather Company, said, "As strong advocates for science, we embrace strong public-private collaborations that understand the value science brings to society, such as our continued efforts with UCAR to advance atmospheric and computational sciences.""Thanks to research funded by the National Science Foundation and other federal agencies, society is on the cusp of a new era in weather prediction, with more precise short-range forecasts as well as longer-term forecasts of seasonal weather patterns," Busalacchi said. "These forecasts are important for public health and safety, as well as enabling companies to leverage economic opportunities in ways that were never possible before."About The Weather CompanyThe Weather Company, an IBM Business, helps people make informed decisions and take action in the face of weather. The company offers weather data and insights to millions of consumers, as well as thousands of marketers and businesses via Weather’s API, its business solutions division, and its own digital products from The Weather Channel (weather.com) and Weather Underground (wunderground.com).This webpage was last updated on July 5, 2017.

Offshore wind turbines vulnerable to Category 5 hurricane gusts

NCAR scientist George Bryan is a co-author of a new study appearing in the journal Geophysical Research Letters. The following is an excerpt from a news release by the University of Colorado Boulder. Offshore wind turbines built according to current standards may not be able to withstand the powerful gusts of a Category 5 hurricane, creating potential risk for any such turbines built in hurricane-prone areas, new University of Colorado Boulder-led research shows.The study, which was conducted in collaboration with the National Center for Atmospheric Research in Boulder, Colorado, and the U.S. Department of Energy’s National Renewable Energy Laboratory in Golden, Colorado, highlights the limitations of current turbine design and could provide guidance for manufacturers and engineers looking to build more hurricane-resilient turbines in the future.Offshore wind-energy development in the U.S. has ramped up in recent years, with projects either under consideration or already underway in most Atlantic coastal states from Maine to the Carolinas, as well as the West Coast and Great Lakes. The country’s first utility-scale offshore wind farm, consisting of five turbines, began commercial operation in December 2016 off the coast of Rhode Island.Turbine design standards are governed by the International Electrotechnical Commission (IEC). For offshore turbines, no specific guidelines for hurricane-force winds exist. Offshore turbines can be built larger than land-based turbines, however, owing to a manufacturer’s ability to transport larger molded components such as blades via freighter rather than over land by rail or truck.Read the full news release.

Decades of data on world's oceans reveal a troubling oxygen decline

NCAR scientist Matthew Long is a co-author of a new study appearing in Geophysical Research Letters. This is an excerpt from a news release by Georgia Tech, a UCAR member institution. May 11, 2017 | A new analysis of decades of data on oceans across the globe has revealed that the amount of dissolved oxygen contained in the water – an important measure of ocean health – has been declining for more than 20 years.Researchers at Georgia Institute of Technology looked at a historic dataset of ocean information stretching back more than 50 years and searched for long term trends and patterns. They found that oxygen levels started dropping in the 1980s as ocean temperatures began to climb.“The oxygen in oceans has dynamic properties, and its concentration can change with natural climate variability,” said Taka Ito, an associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences who led the research. “The important aspect of our result is that the rate of global oxygen loss appears to be exceeding the level of nature's random variability.”The study, which was published April in Geophysical Research Letters, was sponsored by the National Science Foundation and the National Oceanic and Atmospheric Administration. The team included researchers from the National Center for Atmospheric Research, the University of Washington-Seattle, and Hokkaido University in Japan.Read the full news release from Georgia Tech.Global map of the linear trend of dissolved oxygen at the depth of 100 meters. (Image courtesy Georgia Tech.) About the articleTitle: Upper ocean O2 trends: 1958–2015Authors: Takamitsu Ito, Shoshiro Minobe, Matthew C. Long, and Curtis DeutschJournal: Geophysical Research Letters, DOI: 10.1002/2017GL073613

Warmer temperatures cause decline in key runoff measure

BOULDER, Colo. — Since the mid-1980s, the percentage of precipitation that becomes streamflow in the Upper Rio Grande watershed has fallen more steeply than at any point in at least 445 years, according to a new study led by the National Center for Atmospheric Research (NCAR).While this decline was driven in part by the transition from an unusually wet period to an unusually dry period, rising temperatures deepened the trend, the researchers said.The study paints a detailed picture of how temperature has affected the runoff ratio — the amount of snow and rain that actually makes it into the river — over time, and the findings could help improve water supply forecasts for the Rio Grande, which is a source of water for an estimated 5 million people.The study results also suggest that runoff ratios in the Upper Rio Grande and other neighboring snow-fed watersheds, such as the Colorado River Basin, could decline further as the climate continues to warm.Sandhill cranes in the San Luis Valley of Colorado. The mountains ringing the valley form the headwaters of the Rio Grande River, which flows south into New Mexico and along the border between Texas and Mexico. (Photo courtesy of the National Park Service.)"The most important variable for predicting streamflow is how much it has rained or snowed," said NCAR scientist Flavio Lehner, lead author of the study. "But when we looked back hundreds of years, we found that temperature has also had an important influence  — which is not currently factored into water supply forecasts. We believe that incorporating temperature in future forecasts will increase their accuracy, not only in general but also in the face of climate change."The study, published in the journal Geophysical Research Letters, was funded by the Bureau of Reclamation, Army Corps of Engineers, National Oceanic and Atmospheric Administration (NOAA), and National Science Foundation, which is NCAR's sponsor.Co-authors of the paper are Eugene Wahl, of NOAA; Andrew Wood, of NCAR; and Douglas Blatchford and Dagmar Llewellyn, both of the Bureau of Reclamation.Over-predicting water supplyBorn in the Rocky Mountains of southern Colorado, the Rio Grande cuts south across New Mexico before hooking east and forming the border between Texas and Mexico. Snow piles up on the peaks surrounding the headwaters throughout the winter, and in spring the snowpack begins to melt and feed the river.The resulting streamflow is used both by farmers and cities, including Albuquerque, New Mexico, and El Paso, Texas, and water users depend on the annual water supply forecasts to determine who gets how much of the river. The forecast is also used to determine whether additional water needs to be imported from the San Juan River, on the other side of the Continental Divide, or pumped from groundwater.Current operational streamflow forecasts depend on estimates of the amount of snow and rain that have fallen in the basin, and they assume that a particular amount of precipitation and snowpack will always yield a particular amount of streamflow.In recent years, those forecasts have tended to over-predict how much water will be available, leading to over-allocation of the river. In an effort to understand this changing dynamic, Lehner and his colleagues investigated how the relationship between precipitation and streamflow, known as the runoff ratio, has evolved over time.Precipitation vs. streamflow: Tree rings tell a new storyThe scientists used tree ring-derived streamflow data from outside of the Upper Rio Grande basin to reconstruct estimates of precipitation within the watershed stretching back to 1571. Then they combined this information with a separate streamflow reconstruction within the basin for the same period. Because these two reconstructions were independent, it allowed the research team to also estimate runoff ratio for each year: the higher the ratio, the greater the share of precipitation that was actually converted into streamflow."For the first time, we were able to take these two quantities and use them to reconstruct runoff ratios over the past 445 years," Wahl said.They found that the runoff ratio varies significantly from year to year and even decade to decade. The biggest factor associated with this variation was precipitation. When it snows less over the mountains in the headwaters of the Rio Grande, not only is less water available to become streamflow, but the runoff ratio also decreases. In other words, a smaller percentage of the snowpack becomes streamflow during drier years.But the scientists also found that another factor affected the runoff ratio: temperature. Over the last few centuries, the runoff ratio was reduced when temperatures were warmer. And the influence of temperature strengthened during drier years: When the snowpack was shallow, warm temperatures reduced the runoff ratio more than when the snowpack was deep, further exacerbating drought conditions. The low runoff ratios seen in dry years were two and a half to three times more likely when temperatures were also warmer."The effect of temperature on runoff ratio is relatively small compared to precipitation," Lehner said. "But because its greatest impact is when conditions are dry, a warmer year can make an already bad situation much worse."A number of factors may explain the influence of temperature on runoff ratio. When it's warmer, plants take up more water from the soil and more water can evaporate directly into the air. Additionally, warmer temperatures can lead snow to melt earlier in the season, when the days are shorter and the angle of the sun is lower. This causes the snow to melt more slowly, allowing the meltwater to linger in the soil and giving plants added opportunity to use it.The extensive reconstruction of historical runoff ratio in the Upper Rio Grande also revealed that the decline in runoff ratio over the last three decades is unprecedented in the historical record. The 1980s were an unusually wet period for the Upper Rio Grande, while the 2000s and 2010s have been unusually dry. Pair that with an increase in temperatures over the same period, and the decline in runoff ratio between 1986 and 2015 was unlike any other stretch of that length in the last 445 years.The graph shows changes to runoff ratio in the Upper Rio Grande over time. (Image courtesy Flavio Lehner, NCAR.) Upgrading the old approachesThis new understanding of how temperature influences runoff ratio could help improve water supply forecasts, which do not currently consider whether the upcoming months are expected to be hotter or cooler than average. The authors are now assessing the value of incorporating seasonal temperature forecasts into water supply forecasts to account for these temperature influences. The study complements a multi-year NCAR project funded by the Bureau of Reclamation and the Army Corps of Engineers that is evaluating prospects for enhancing seasonal streamflow forecasts for reservoir management.“Forecast users and stakeholders are increasingly raising questions about the reliability of forecasting techniques if climate is changing our hydrology," said Wood, who led the effort. "This study helps us think about ways to upgrade one of our oldest approaches — statistical water supply forecasting — to respond to recent trends in temperature. Our current challenge is to find ways to make sure the lessons of this work can benefit operational streamflow forecasts.” Because the existing forecasting models were calibrated on conditions in the late 1980s and 1990s, it's not surprising that they over-predicted streamflow in the drier period since 2000, Lehner said."These statistical models often assume that the climate is stable," Lehner said. "It's an assumption that sometimes works, but statistical forecasting techniques will struggle with any strong changes in hydroclimatology from decade to decade, such as the one we have just experienced."Lehner is a Postdoc Applying Climate Expertise (PACE) fellow, which is part of the Cooperative Programs for the Advancement of Earth System Science (CPAESS). CPAESS is a community program of the University Corporation for Atmospheric Research (UCAR).About the articleTitle: Assessing recent declines in Upper Rio Grande River runoff efficiency from a paleoclimate perspectiveAuthors: Flavio Lehner, Eugene R. Wahl, Andrew W. Wood, Douglas B. Blatchford, and Dagmar LlewellynJournal: Geophysical Research Letters, DOI: 10.1002/2017GL073253Writer:Laura Snider, Senior Science Writer and Public Information Officer

NCAR to develop advanced wind and solar energy forecasting system for Kuwait

BOULDER, Colo. — Expanding its work in renewable energy, the National Center for Atmospheric Research (NCAR) is launching a three-year project to develop specialized forecasts for a major wind and solar energy facility in Kuwait."We're putting our expertise and technology to work around the world," said NCAR Senior Scientist Sue Ellen Haupt, the principal investigator on the project. "This landmark project meets our mission of science in service to society."The $5.1 million project will focus on developing a system to provide detailed forecasts of wind and solar irradiance at Kuwait's planned 2-gigawatt Shagaya renewable energy plant. After NCAR develops the system, the technology will be transferred to the Kuwait Institute for Scientific Research (KISR) for day-to-day operations.Salem Al-Hajraf of KISR and Antonio J. Busalacchi of UCAR shake hands over an agreement to create a renewable energy forecasting system. Behind them are NCAR scientists (left to right): Gerry Wiener, Branko Kosovic, Sue Ellen Haupt, and William Mahoney. (©UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.)The forecasts will help Kuwait reach its goal of generating 15 percent of its energy from renewable sources by 2030. With the ability to anticipate the amount of electricity that sun and wind will produce hours to days in advance, energy operators will be able to power up or down traditional plants as needed to meet demand."This technology will provide us with important benefits," said Salem Al-Hajraf, manager of KISR's Renewable Energy Program. "We are providing green energy to the grid using abundant sources of energy, which are sun and wind."Reducing renewable energy costsWhen electric utilities integrate power from intermittent sources such as wind or solar into the grid, they temporarily reduce or shut off traditional sources such as oil or natural gas. But if weather conditions fail to come together as expected, the utility may not be able to power up traditional plants in time to meet their customer needs.To help utility managers anticipate renewable wind energy more reliably, NCAR has designed and is constantly improving a wind energy prediction system for Xcel Energy that has saved tens of millions of dollars for the utility’s customers in Colorado and nearby states. The specialized system relies on a suite of tools, including highly detailed observations of atmospheric conditions, advanced computer modeling, and artificial intelligence techniques that enable Xcel Energy to issue high-resolution forecasts for wind farm sites.With funding from the U.S. Department of Energy, NCAR has also led a national team of scientists who have developed a cutting-edge forecasting system with the potential to save the solar energy industry hundreds of millions of dollars in the United States alone through improved forecasts. The new Sun4CastTM system, unveiled last year, greatly improves predictions of clouds and other atmospheric conditions that influence the amount of energy generated by solar arrays.Adapting to new conditionsIn Kuwait, the NCAR team will build on these technologies to develop both wind and solar energy forecasts. The scientists will customize the system to predict dust storms that can blot out sunlight and damage wind turbines. They will also incorporate the influence of nearby mountain ranges and the Persian Gulf on local weather patterns."This is a great opportunity to do research into dust and other particulates, which we haven't previously needed to focus on to this extent for wind and solar energy prediction," Haupt said. "This kind of work will pay multiple dividends for energy forecasting as well as better understanding and predicting of weather in certain desert environments."Haupt and her team will collaborate with researchers at Pennsylvania State University and Solar Consulting Services in Florida, as well as with KISR."This is an exciting international partnership that will both generate significant economic benefits and advance our understanding of the atmosphere," said Antonio J. Busalacchi, president of the University Corporation for Atmospheric Research. "In addition to reducing energy costs for our partners in Kuwait, the knowledge that we gain will help us further improve weather prediction skills here in the United States."The University Corporation for Atmospheric Research is a nonprofit consortium of 110 North American colleges and universities that manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation.KISR leads and partners internationally to develop, deploy, and exploit the best science, technology, knowledge, and innovation for public and private sector clients, for the benefit of Kuwait and others facing similar challenges and opportunities. Sun4Cast is a trademark of the University Corporation for Atmospheric Research.

Promoting diversity in high-performance computing

May 2, 2017 | Justin Moore was supporting his family of four with a job at an auto parts store while juggling classes at Salish Kootenai College, a Native American college in Montana, when he heard about a computing internship in 2014 at the National Center for Atmospheric Research (NCAR) in Boulder, Colo.The internship, which used a small, low-cost computer called Raspberry Pi to teach key concepts of high-performance computing, quickly paid off. Today, Moore works full-time as an IT network specialist at Energy Keepers Inc., which manages the hydroelectric plant on the Flathead Indian Reservation in Montana, while he continues to chip away at his degree."I believe the skills I obtained in the internship can be directly attributed to my success in my field," Moore said. "It also gave me the chance to network with some of the brightest minds in the country."Justin Moore turned a summer internship at NCAR into a full-time computer networking job at a hydroelectric plant on the Flathead Indian Reservation in Montana. (©UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.)Since 2014, NCAR has been using Raspberry Pi as part of the SIParCS (Summer Internships in Parallel Computational Science) program to teach "hot" computing skills to small groups of university students, including one or two who are underrepresented in the sciences. In March, in efforts to reach more students, NCAR pivoted to an "externship" model, bringing the Raspberry Pi training to Miami Dade College faculty who can teach the skills to dozens of students at a time. “Raspberry Pi is a perfect platform for high-performance computing education because the credit-card sized mother boards can be linked together to mimic the parallel processing capabilities of a supercomputer and perform simplified geoscience applications,” said Rich Loft, director of technology development in NCAR's Computational and Information Systems Laboratory.A Raspberry Pi, which costs $35 or less, can run a full Linux operating system — the same system used by nearly all supercomputers, in more than 90 percent of smartphones, and in many other electronic devices.A Raspberry Pi kit used during the NCAR training at Miami Dade College. The Raspberry Pi circuit board is in the upper right-hand corner, connected to a blue cable. Components plug into a breadboard in the center of the picture (Photo courtesy Rich Loft, NCAR.)"It's inexpensive. It levels the playing field," said Loft, who led the training at Miami Dade College. "In my view it busts the digital divide."Loft noted that the previous internship approach wasn't reaching as many students as NCAR had hoped, partly because many students found it too difficult to relocate to Boulder during the summer. Miami Dade proved an ideal testbed for an externship model, since it's one of the country's largest universities, with eight campuses and more than 90,000 students, 70 percent of whom are Hispanic and 17 percent of whom are African American."This approach has scalability," Loft said, shortly after returning from the intensive two-day faculty workshop. "You can't scale up a program training one student at a time, even though it's very rewarding."The NCAR directorate, which supported the Miami Dade training through a diversity grant, hopes that an expanded program will reap even greater outcomes.A legacy of successThe Raspberry Pi internship approach already has yielded additional success stories, with students going on to graduate school and receiving prestigious scholarships.Lauren Patterson, for example, was a student at Hampton University in Virginia when she learned Raspberry Pi as a SIParCs intern at NCAR, also in 2014. "I loved that I was able to work hands-on and assemble the Raspberry Pi cluster myself," Patterson said.Lauren Patterson has received an Apple scholarship and will start a job at Google after completing her summer internship on Raspberry Pi at NCAR. (@UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.) She said her experience led to an Apple internship under its scholars program, a $25,000 scholarship, and a software engineering job at Google starting next fall in New York City. Apple scholars participate in a 12-week internship at Apple headquarters in California, receive ongoing coaching and guidance, and serve as Apple ambassadors on their campuses.Gaston Seneza, a senior at Philander Smith College in Arkansas, said that before NCAR's SIParCS 2015 internship he had no practical knowledge of computers.He learned about Linux, sensors, programming, cloud storage, and scientific research, and now has a passion for computer science. "Raspberry Pi was a game-changer for me," he said.Gaston Seneza, who is from Rwanda, also won an Apple scholarship after his summer internship at NCAR. (@UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.) The Rwandan native also was named an Apple scholar, and aspires to go into the field of artificial intelligence. "My dream is to see a world where intelligent machines work for us."Said Loft: "We're trying to get these kids on the hi-tech career onramp. You put machine learning or experience with parallel computing on your resume and you can get hired by Apple, Google, or Amazon – or get into graduate school. These are hot skills." Machine learning is a type of artificial intelligence in which a computer program can change or "learn" as it encounters new data.Moore, Patterson, and Seneza all praised the mentoring by Loft, an NCAR senior scientist, and Raghu Raj Prassana Kumar, an NCAR project scientist who has worked with the Raspberry Pi training project since its beginning."It's a lot of fun, and it's very rewarding to help these young people learn," Kumar said.Kumar is also known at NCAR for creative uses of Raspberry Pi, including connecting 12 of them to calculate Pi to a million digits on Pi Day in 2015. (It took longer than a day and one Raspberry Pi burned out from exertion, but it was successful.)Connecting learning to everyday lifeAt the recent Miami Dade workshop, Kumar and Loft, along with University of Wyoming Professor Suresh Muknahallipatna and three of his students, taught 20 Miami Dade faculty members how to set up and program simple projects with a Raspberry Pi. One group used sensors to measure things like temperature, pressure, and humidity, while another created a word frequency histogram from the complete works of William Shakespeare using a Raspberry Pi Hadoop cluster.Ana Guzman (far right), a Miami Dade College associate professor of electricial engineering, gets Raspberry Pi tips from Cena Miller, a University of Wyoming student. A group of Miami Dade faculty members were trained recently on using the low-cost computers for hands-on teaching by a team that included NCAR computer scientists and University of Wyoming students. (Photo courtesy Rich Loft, NCAR.) David Freer, a Miami Dade computer science professor, said he and his colleagues thought the workshop was terrific. "We worked with flame sensors that sent messages to users on their cell phones, along with other cool projects," he said.Djuradj Babich, director of Miami Dade's School of Engineering and Technology, said he hopes to "ride the excitement wave" from the training and develop an ongoing relationship with NCAR. Loft said NCAR also hopes to reach out to additional universities.Qiong Cheng, an assistant professor at Miami Dade, has since set up a Raspberry Pi in her office, complete with a motion detector. She said she will use the Raspberry Pi platform in her classes this fall, which are part of a new bachelor's program in data analytics.She likes the fact that Raspberry Pi, combined with sensors, is an inexpensive way to measure data in the real world, and thus connect learning to everyday life.  "Students are more interested in that," she said, adding that Raspberry Pi supports "our mission to reach underrepresented students — to motivate them, to inspire them, and to provide them with a hands-on learning experience."That's the kind of talk that excites Loft."We want to continue to collaborate to drive this home. Which means that Miami Dade is using this in their curriculum as the workhorse in their computer lab for students," he said. "That's what's going to make me very happy."Writer/Contact:Jeff Smith, Science Writer and Public Information Officer  

Pages

Subscribe to NCAR