Policy & Society

Investing in climate observations would generate major returns

November 14, 2017 | A major new paper by more than two dozen climate experts concludes that a well-designed climate observing system could deliver trillions of dollars in benefits while providing decision makers with the information they need in coming decades to protect public health and the economy."We are on the threshold of a new era in prediction, drawing on our knowledge of the entire Earth system to strengthen societal resilience to potential climate and weather disasters," said Antonio Busalacchi, president of the University Corporation for Atmospheric Research and one of the co-authors. "Strategic investments in observing technologies will pay for themselves many times over by protecting life and property, promoting economic growth, and providing needed intelligence to decision makers."Elizabeth Weatherhead, a scientist with the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder, is the lead author of the new paper, published last week in Earth's Future. The co-authors include two scientists associated with the National Center for Atmospheric Research: Jeffrey Lazo and Kevin Trenberth.The scientists urge that investments focus on tackling seven grand challenges. These include predicting extreme weather and climate shifts, the role of clouds and circulation in regulating climate, regional sea level change and coastal impacts, understanding the consequences of melting ice, and feedback loops involving carbon cycling.For more about the paper, see the CIRES news release.

UCAR Congressional Briefing: Moving research to industry

WASHINGTON — Federally funded scientific advances are enabling the multibillion-dollar weather industry to deliver increasingly targeted forecasts to consumers and businesses, strengthening the economy and providing the nation with greater resilience to natural disasters, experts said today at a congressional briefing.The panel of experts, representing universities, federally funded labs, and the private sector, said continued government investment in advanced computer modeling, observing tools, and other basic research provides the foundation for improved forecasts.The nonprofit University Corporation for Atmospheric Research (UCAR) sponsored the briefing."Thanks to a quiet revolution in modern weather prediction, we can all use forecasts to make decisions in ways that wouldn't have been possible just 10 years ago," said Rebecca Morss, a senior scientist with the National Center for Atmospheric Research (NCAR) and deputy director of the center's Mesoscale and Microscale Meteorology Lab. "Now we are looking to the next revolution, which includes giving people longer lead times and communicating risk as effectively as possible."Fuqing Zhang, a professor of meteorology and statistics at Pennsylvania State University, highlighted the ways that scientists are advancing their understanding of hurricanes and other storms with increasingly detailed observations and computer modeling. Researchers at Penn State, for example, fed data from the new National Oceanic and Atmospheric Administration GOES-R satellite into NOAA's powerful FV3 model to generate an experimental forecast of Hurricane Harvey that simulated its track and intensity."The future of weather forecasting is very promising," said Zhang, who is also the director of the Penn State Center for Advanced Data Assimilation and Predictability Techniques.  "With strategic investments in observations, modeling, data assimilation, and supercomputing, we will see some remarkable achievements."Mary Glackin, director of science and forecast operations for The Weather Company, an IBM business, said the goal of the weather industry is to help consumers and businesses make better decisions, both by providing its own forecasts and by forwarding alerts from the National Weather Service. The Weather Company currently is adapting a powerful research weather model based at NCAR, the Model for Prediction Across Scales (MPAS), for use in worldwide, real-time forecasts.The NCAR-based Model for Prediction Across Scales simulates the entire globe while enabling scientists to zoom in on areas of interest. It is one of the key tools for improving forecasts in the future. (©UCAR. This image is freely available for media & nonprofit use.) "We have a weather and climate enterprise that we can be extremely proud of as a nation, but it's not where it should be," Glackin said. "Weather affects every consumer and business, and the public-private partnership can play a pivotal role in providing better weather information that is critically needed."Antonio Busalacchi, president of UCAR, emphasized the benefits of partnerships across the academic, public, and private sectors. He said that research investments by the National Science Foundation, NOAA, and other federal agencies are critical for improving forecasts that will better protect vulnerable communities and strengthen the economy."These essential collaborations between government agencies, universities, and private companies are driving landmark advances in weather forecasting," Busalacchi said. "The investments that taxpayers are making in basic research are paying off many times over by keeping our nation safer and more prosperous."The briefing was the latest in a series of UCAR Congressional Briefings that draw on expertise from UCAR's university consortium and public-private partnerships to provide insights into critical topics in the Earth system sciences. Past briefings have focused on wildfires, predicting space weather, aviation weather safety, the state of the Arctic, hurricane prediction, potential impacts of El Niño, and new advances in water forecasting.

New approach to geoengineering simulations is significant step forward

BOULDER, Colo. — Using a sophisticated computer model, scientists have demonstrated for the first time that a new research approach to geoengineering could potentially be used to limit Earth’s warming to a specific target while reducing some of the risks and concerns identified in past studies, including uneven cooling of the globe.The scientists developed a specialized algorithm for an Earth system model that varies the amount and location of geoengineering — in this case, injections of sulfur dioxide high into the atmosphere — that would in theory be needed, year to year, to effectively cap warming. They caution, however, that more research is needed to determine if this approach would be practical, or even possible, in the real world.The findings from the new research, led by scientists from the National Center for Atmospheric Research (NCAR), Pacific Northwest National Laboratory (PNNL), and Cornell University, represent a significant step forward in the field of geoengineering. Still, there are many questions that need to be answered about sulfur dioxide injections, including how this type of engineering might alter regional precipitation patterns and the extent to which such injections would damage the ozone layer. The possibility of a global geoengineering effort to combat warming also raises serious governance and ethical concerns."This is a major milestone and offers promise of what might be possible in the future,” said NCAR scientist Yaga Richter, one of the lead authors. “But it is just the beginning; there is a lot more research that needs to be done."Past modeling studies have typically sought to answer the question "What happens if we do geoengineering?" The results of those studies have described the outcomes — both positive and negative — of injecting a predetermined amount of sulfates into the atmosphere, often right at Earth's equator. But they did not attempt to specify the outcome they hoped to achieve at the outset.In a series of new studies, the researchers turned the question around, instead asking, "How might geoengineering be used to meet specific climate objectives?""We have really shifted the question, and by doing so, found that we can better understand what geoengineering may be able to achieve," Richter said.The research findings are detailed in a series of papers published in a special issue of the Journal of Geophysical Research – Atmospheres.Mimicking a volcanoIn theory, geoengineering — large-scale interventions designed to modify the climate — could take many forms, from launching orbiting solar mirrors to fertilizing carbon-hungry ocean algae. For this research, the team studied one much-discussed approach: injecting sulfur dioxide into the upper atmosphere, above the cloud layer.The idea of combating global warming with these injections is inspired by history's most massive volcanic eruptions. When volcanoes erupt, they loft sulfur dioxide high into the atmosphere, where it's chemically converted into light-scattering sulfate particles called aerosols. These sulfates, which can linger in the atmosphere for a few years, are spread around the Earth by stratospheric winds, forming a reflective layer that cools the planet.To mimic these effects, sulfur dioxide could be injected directly into the stratosphere, perhaps with the help of high-flying aircraft. But while the injections would counter global warming, they would not address all the problems associated with climate change, and they would likely have their own negative side effects.For example, the injections would not offset ocean acidification, which is linked directly to carbon dioxide emissions. Geoengineering also could result in significant disruptions in rainfall patterns as well as delays in healing the ozone hole. Moreover, once geoengineering began, if society wanted to avoid a rapid and drastic increase in temperature, the injections would need to continue until mitigation efforts were sufficient to cap warming on their own.There would also likely be significant international governance challenges that would have to be overcome before a geoengineering program could be implemented."For decision makers to accurately weigh the pros and cons of geoengineering against those of human-caused climate change, they need more information," said PNNL scientist Ben Kravitz, also a lead author of the studies. "Our goal is to better understand what geoengineering can do — and what it cannot."Modeling the complex chemistryFor the new studies, the scientists used the NCAR-based Community Earth System Model with its extended atmospheric component, the Whole Atmosphere Community Climate Model. WACCM includes detailed chemistry and physics of the upper atmosphere and was recently updated to simulate stratospheric aerosol evolution from source gases, including geoengineering."It was critical for this study that our model be able to accurately capture the chemistry in the atmosphere so we could understand how quickly sulfur dioxide would be converted into aerosols and how long those aerosols would stick around," said NCAR scientist Michael Mills, also a lead author. "Most global climate models do not include this interactive atmospheric chemistry.”The scientists also significantly improved how the model simulates tropical stratospheric winds, which change direction every few years. Accurately representing these winds is critical to understanding how aerosols are blown around the planet.The scientists successfully tested their model by seeing how well it could simulate the massive 1991 eruption of Mount Pinatubo, including the amount and rate of aerosol formation, as well as how those aerosols were transported around the globe and how long they stayed in the atmosphere.Then the scientists began to explore the impacts of injecting sulfur dioxide at different latitudes and altitudes. From past studies, the scientists knew that sulfates injected only at the equator affect Earth unevenly: over-cooling the tropics and under-cooling the poles. This is especially problematic since climate change is warming the Arctic at a faster rate. Climate change is also causing the Northern Hemisphere to warm more quickly than the Southern Hemisphere.The researchers used the model to study 14 possible injection sites at seven different latitudes and two different altitudes — something never before tried in geoengineering research. They found that they could spread the cooling more evenly across the globe by choosing injection sites on either side of the equator.The simulations on the left represent how global temperatures are expected to change if greenhouse gas emissions continue on a "business as usual" trajectory. The simulations on the right show how temperature could be stabilized in a model by injecting sulfur dioxide high into the atmosphere at four separate locations. Because greenhouse gases are being emitted at the same rate in the simulations on the left and the right, stopping geoengineering would result in a drastic spike in global temperatures. (©UCAR. This image is freely available for media & nonprofit use.)  Meeting multiple objectivesThe researchers then pieced together all their work into a single model simulation with specific objectives: to limit average global warming to 2020 levels through the end of the century and to minimize the difference in cooling between the equator and the poles as well as between the northern and southern hemispheres.They gave the model four choices of injection sites — at 15 degrees and 30 degrees North and South in latitude — and then implemented an algorithm that determines, for each year, the best injection sites and the quantity of sulfur dioxide needed at those sites. The model's ability to reformulate the amount of geoengineering needed each year, based on that year's conditions, also allowed the simulation to respond to natural fluctuations in the climate.The model successfully kept the surface temperatures near 2020 levels against a background of increasing greenhouse gas emissions that would be consistent with a business-as-usual scenario. The algorithm’s ability to choose injection sites cooled the Earth more evenly than in previous studies, because it could inject more sulfur dioxide in regions that were warming too quickly and less in areas that had over-cooled.However, by the end of the century, the amount of sulfur dioxide that would need to be injected each year to offset human-caused global warming would be enormous: almost five times the amount spewed into the air by Mount Pinatubo on June 15, 1991.Flipping the research question"The results demonstrate that it is possible to flip the research question that's been guiding geoengineering studies and not just explore what geoengineering does but see it as a design problem,” said Doug MacMartin, a scientist at Cornell and the California Institute of Technology. “When we see it in that light, we can then start to develop a strategy for how to meet society’s objectives."In the current series of studies, adjusting the geoengineering plan just once a year allowed the researchers to keep the average global temperature to 2020 levels in a given year, but regional temperatures — as well as seasonal temperature changes — were sometimes cooler or hotter than desired. So next steps could include exploring the possibility of making more frequent adjustments at a different choice of injection locations.The scientists are already working on a new study to help them understand the possible impacts geoengineering might have on regional phenomena, such as the Asian monsoons."We are still a long way from understanding all the interactions in the climate system that could be triggered by geoengineering, which means we don’t yet understand the full range of possible side effects," said NCAR scientist Simone Tilmes, a lead author. "But climate change also poses risks. Continuing research into geoengineering is critical to assess benefits and side effects and to inform decision makers and society."The research was funded by the Defense Advanced Research Projects Agency and the National Science Foundation, NCAR's sponsor.Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Defense Advanced Research Projects Agency.About the papers:Titles:Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM), DOI: 10.1002/2017JD027006Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations, DOI: 10.1002/2017JD026888Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO2 Injections, DOI: 10.1002/2017JD026912The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations, DOI: 10.1002/2017JD026868First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives, DOI: 10.1002/2017JD026874Authors: B. Kravitz, D. MacMartin, M. J. Mills, J. H. Richter, and S. TilmesCo-authors: F. Vitt, J. J. Tribbia, J.-F. LamarqueJournal: Journal of Geophysical Research – AtmospheresData access: All the data from the experiments are available on the Earth System Gridathttps://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.so2_geoeng.htmlorhttp://dx.doi.org/10.5065/D6X63KMM and https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.so2_ctl_fb.html orhttp://dx.doi.org/10.5065/D6PC313T.Writer:Laura Snider, Senior Science Writer

UCAR statement on nomination of Barry Myers to head NOAA

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) congratulates Barry Myers on his nomination as administrator of the National Oceanic and Atmospheric Administration (NOAA).Myers is CEO of AccuWeather and a leader of the American weather industry. He lent important support for the Weather Research and Forecasting Innovation Act of 2017, which emphasizes subseasonal to seasonal weather prediction — a priority for business and community leaders who need more reliable forecasts of weather patterns weeks to months in advance.His nomination, announced today by the White House, comes at a critical time as the United States works to strengthen its resilience to severe weather events and regain global leadership in the field of weather prediction."From my years of working with Barry, I know he appreciates the importance of re-establishing U.S. preeminence in weather prediction," said UCAR President Antonio Busalacchi. "I look forward to hearing Barry’s plans to improve weather forecasting through partnerships among government agencies, private companies, and the university community. As we have seen from the recent hurricanes, timely and accurate forecasts are critical for evacuating residents and protecting lives and property, as well as strengthening our economy and safeguarding national security.”In addition to running the National Weather Service, NOAA engages in weather and climate research and operates weather satellites and a national environmental data center. The agency also works to better understand and protect the nation's coasts, oceans, and fisheries.  

UCAR statement on nomination of Walter Copan to head NIST

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) congratulates Walter Copan on his nomination as undersecretary of commerce for standards and technology and director of the National Institute of Standards and Technology (NIST).Copan, an expert in technology transfer and intellectual property, is president and CEO of Colorado-based Intellectual Property Engineering Group. He previously served at the National Renewable Energy Laboratory and at Brookhaven National Laboratory, leading technology commercialization and R&D partnerships."Walt is a widely respected scientist, innovator, and administrator with extensive experience in moving research to the market where it can benefit society," said UCAR President Antonio Busalacchi. "His knowledge of weather, climate, and space weather will foster new areas of cooperation between NIST and the Earth system science community."NIST is a measurement standards laboratory that promotes innovation and industrial competitiveness. The NIST Cybersecurity Framework provides guidance to organizations on reducing cybersecurity risks.UCAR is a nonprofit consortium of more than 100 colleges and universities focused on research and training in the atmospheric and related sciences.

UCAR statement on nomination of Rep. Jim Bridenstine to lead NASA

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) congratulates U.S. Rep. Jim Bridenstine on his nomination to serve as administrator of NASA.Bridenstine, a pilot in the U.S. Navy Reserve and former executive director of the Tulsa Air and Space Museum and Planetarium, won election to Congress in 2012 to represent Oklahoma’s 1st Congressional District. As a member of the House Science, Space, and Technology Committee, he has played a leading role in supporting weather research, including passage of the Weather Research and Forecasting Innovation Act of 2017."In the two times I testified before his congressional committees, it became quite apparent to me that Rep. Bridenstine is a true champion for the weather community,” said UCAR President Antonio Busalacchi. “We appreciate his deep understanding of the importance of improved weather prediction for the U.S. economy and national security, as well as for protecting lives and property. As someone who worked for NASA for 18 years, I look forward to Rep. Bridenstine's confirmation hearings and learning about his plans for the agency, including his support of Earth observations and research that are so essential for understanding our planet's weather and climate."In addition to running the nation's civilian space program, NASA operates a fleet of satellites and observation campaigns to learn more about our planet through the Earth Observing System. Its research also focuses on advancing understanding of the Sun, solar system, and the universe.UCAR is a nonprofit consortium of more than 100 colleges and universities focused on research and training in the atmospheric and related Earth system sciences.

UCAR statement on nomination of Timothy Gallaudet

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) congratulates Rear Admiral Timothy Gallaudet, a former oceanographer of the Navy, on his nomination to assistant secretary of commerce for oceans and atmosphere. In that position, Gallaudet will serve as the second-in-command at the National Oceanic and Atmospheric Administration (NOAA). Gallaudet, who also served as commander of the Navy’s Meteorology and Oceanography Command, is a 32-year Navy veteran. He holds master's and doctoral degrees in oceanography from the Scripps Institution of Oceanography."Tim's mixture of operational expertise and scientific knowledge make him an ideal choice for this position," said UCAR President Antonio Busalacchi. "His understanding of the vital collaborations between NOAA, private forecasting companies, and the academic community can help foster the movement of research to operational forecasting and advance the nation's weather prediction capabilities. Furthermore, his knowledge of Earth system science and his ability to align that science with budget and programs will be essential to moving NOAA forward in the next few years."NOAA runs the National Weather Services, engages in weather and climate research, and operates weather satellites and a climate data center. The agency also works to better understand and protect the nation's coasts, oceans, and fisheries.UCAR is a nonprofit consortium of more than 100 colleges and universities focused on research and training in the atmospheric and related sciences.

UCAR statement on U.S. withdrawal from Paris climate agreement

BOULDER, Colo. — President Donald Trump today announced he is withdrawing the United States from the Paris Agreement on climate change, a global pact signed by more than 190 countries to cut carbon dioxide emissions. He also said he would seek to renegotiate it or forge a new agreement. Antonio J. Busalacchi, the president of the University Corporation for Atmospheric Research (UCAR), issued the following statement:Today's decision to begin withdrawing from the Paris Agreement under its current terms creates new uncertainties about the future of our climate. At a time when our economic well-being and national security depend increasingly on accurate predictions of the impacts of greenhouse gas emissions, investments in climate research are even more necessary so scientists can project climate change in the new policy environment.Climate change poses major risks to food and water supplies, transportation systems, and other resources in the United States and worldwide. Rising temperatures and their impacts on weather patterns are creating additional stress at a time of international conflicts, endangering our economic and military security. If average global temperatures rise more than 2 degrees Celsius — the target of the Paris Agreement — research indicates that damaging impacts, such as sea level rise, intense heat waves and droughts, and shifts in weather patterns and storms will become more severe. With today’s decision, scientists will need to focus more attention on the potential ramifications of failing to curb emissions sufficiently to meet the 2-degree target.Nations are amassing information about future climate conditions as a necessary precondition for competing in the global marketplace. Multinational corporations are seeking to mitigate their exposure to climate risks, and if they cannot get the needed information from U.S.-funded research they will go elsewhere to get the most authoritative information. U.S. rivals, including China, are conducting vigorous climate research projects that support their economic and military investments and expand their influence worldwide. Even if the United States no longer participates in climate agreements, it cannot afford to cede climate knowledge to overseas competitors.Climate research is fundamentally nonpartisan. The work under way at the National Center for Atmospheric Research, in collaboration with our partners at government agencies, the university community, and the private sector, builds an evidence-based picture of the possible future impacts of climate change. As always, we stand ready to provide the results of our scientific inquiry to Congress and the administration in order to keep our nation secure and prosperous.Today's decision does not mean that climate change will go away. To the contrary, the heightened potential for increased greenhouse gas emissions poses a substantial threat to our communities, businesses, and military. The work by U.S. researchers — to understand and anticipate changes in our climate system and determine ways to mitigate or adapt to the potential impacts — is now more vital than ever.

UCAR statement on President Trump's budget proposal

BOULDER, Colo. — Antonio J. Busalacchi, the president of the University Corporation for Atmospheric Research (UCAR), issued the following statement about the federal budget proposal for fiscal year 2018, which the Trump administration released today following its budget blueprint in March:Today's budget proposal, which identifies the priorities of the White House, marks a major step in the months-long process by the Trump administration and Congress to  finalize the budget for the 2018 fiscal year that begins Oct. 1. UCAR is working with its partners in the Earth system science community to ensure that the government continues to invest in crucial research and scientific infrastructure that saves lives and property, supports our continued economic competitiveness, and strengthens our national security.Improved understanding of the atmosphere is crucial for our nation's resilience. Last year alone, the United States experienced 15 weather-related disasters that each reached or exceeded $1 billion in costs, including tornadoes, drought, and widespread flooding. Even routine weather events have an annual economic impact of hundreds of billions of dollars, affecting transportation, supply chain management, consumer purchasing, and virtually every other economic sector. Higher up in our atmosphere, space weather events pose an ongoing threat to GPS systems, communications networks, power grids, and other technologies that are essential for the everyday functioning of our nation.Thanks to collaborations among government agencies, universities, and the private sector, scientists are developing increasingly advanced observing instruments and computer models to better understand these threats. We are gaining the ability to predict major atmospheric and related events weeks, months, or even more than a year in advance, providing needed environmental intelligence to business, military, and public safety leaders. As U.S. competitors make major investments into better observing, understanding, and predicting the Earth system, it is more imperative than ever to continue this work in order to maintain American preeminence in the world.We are concerned that the administration's proposed cuts to research into the Earth system sciences will undermine the continued scientific progress that is so vitally needed to better protect the nation in the future from costly natural disasters. This would have serious repercussions for the U.S. economy and national security, and for the ability to protect life and property. Such funding cuts would be especially unfortunate at a time when the nation is moving to regain its position as the world leader in weather forecasting.UCAR is extremely grateful to the bipartisan majorities in the House and Senate that voted to sustain research funding in the current fiscal year. We look forward to working with Congress in the months ahead to maintain the level of funding needed in the fiscal year 2018 budget to support essential Earth system science research.

Pages

Subscribe to Policy & Society