Eclipse science along the path of totality

BOULDER, Colo. — Leading U.S. solar scientists today highlighted research activities that will take place across the country during next month's rare solar eclipse, advancing our knowledge of the Sun's complex and mysterious magnetic field and its effect on Earth's atmosphere.Experts at the National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and National Center for Atmospheric Research (NCAR) provided details at this morning's press conference about the array of technologies and methodologies that will be used to obtain unprecedented views of the Sun on Aug. 21. The experiments, led by specialized researchers, will also draw on observations by amateur skywatchers and students to fill in the picture."This total solar eclipse across the United States is a fundamentally unique opportunity in modern times, enabling the entire country to be engaged with modern technology and social media," said Carrie Black, an associate program director at NSF who oversees solar research. "Images and data from potentially as many as millions of people will be collected and analyzed by scientists for years to come."Total solar eclipse over India in 1980. (©UCAR, High Altitude Observatory. This image is freely available for media & nonprofit use.)"This is a generational event," agreed Madhulika Guhathakurta, NASA lead scientist for the 2017 eclipse. "This is going to be the most documented, the most appreciated eclipse ever."The scientific experiments will take place along the path of totality, a 70-mile wide ribbon stretching from Oregon to South Carolina where the moon will completely cover the visible disk of the Sun. Depending on the location, viewers will get to experience the total eclipse for as long as 2 minutes and 40 seconds. It will take about an hour and a half for the eclipse to travel across the sky from the Pacific Coast to the Atlantic.NASA and other organizations are reminding viewers to take eye safety precautions because it is not safe to look at the Sun during an eclipse.For scientists, the celestial event is a rare opportunity to test new instruments and to observe the elusive outer atmosphere of the Sun, or solar corona, which is usually obscured by the bright surface of the Sun. Many scientific questions focus on the corona, including why it is far hotter than the surface and what role it plays in spewing large streams of charged particles, known as coronal mass ejections, that can buffet Earth's atmosphere and disrupt GPS systems and other sensitive technologies.Black noted that the moon will align exactly with the Sun's surface, which will enable observations of the entire corona, including very low regions that are rarely detectable. Obtaining observations from the ground is particularly important, she explained, because far more data can be transmitted than would be possible from space-based instruments."The moon is about as perfect an occulter as one can get," she said. "And what makes this an even more valuable opportunity is that everyone has access to it."In addition to training ground-based instruments on the Sun, scientists will also deploy aircraft to follow the eclipse, thereby increasing the amount of time they can take observations.An NCAR research team, for example, will use the NSF/NCAR Gulfstream-V research aircraft to take infrared measurements for about four minutes, helping scientists better understand the solar corona's magnetism and thermal structure. Scientists with the Southwest Research Institute in Boulder will use visible and infrared telescopes on NASA's twin WB-57 airplanes in a tag-team approach, enabling them to get a unique look at both the solar corona and Mercury for about eight minutes. The goal is to better understand how energy moves through the corona as well as learning more about the composition and properties of Mercury's surface.Scientists will also study Earth's outer atmosphere during the eclipse. The ionosphere is a remote region of the atmosphere containing particles that are charged by solar radiation. Disturbances in the ionosphere can affect low-frequency radio waves. By blocking energy from the Sun, the eclipse provides scientists with an opportunity to study the ionosphere's response to a sudden drop in solar radiation.For example, a Boston University research team will use off-the-shelf cell phone technology to construct a single-frequency GPS array of sensors to study the ionospheric effects of the eclipse. This project could lay the foundation for using consumer smartphones to help monitor the outer atmosphere for disturbances, or space weather events, caused by solar storms. Another experiment, run by researchers at the University of Virginia and George Mason University, will use transmitters broadcasting at low frequencies to probe the response of regions of the ionosphere, while a Virginia Tech team will use a network of radio receives and transmitters across the country to observe the ionosphere's response during the eclipse.Citizen scientists also are expected to play a major role in taking valuable observations during the eclipse."This is a social phenomenon, and we have a significant opportunity to promote this and do all the science that we can," Guhathakurta said.The Citizen Continental-America Telescopic Eclipse (CATE) Experiment by the National Solar Observatory, for example, will rely on volunteers from universities, high schools, informal education groups, and national labs for an eclipse "relay race." Participants spaced along the path of totality will use identical telescopes and digital camera systems to capture high-quality images that will result in a dataset capturing the entire, 93-minute eclipse across the country. And a project led by the University of California Berkeley will assemble a large number of solar images, obtained by students and amateur observers along the eclipse path to create educational materials as part of the Eclipse Megamovie project."As these projects show, the eclipse will place the Sun firmly in the forefront of the national eye," said Scott McIntosh, director of NCAR's High Altitude Observatory. "This is a unique opportunity to communicate the fact that our star is complex, beautiful, and mysterious. At the same time, it is more critical than ever to study it, as solar activity can pose significant threats to our technologically driven society." 

Michael Farrar joins UCAR leadership

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) has named Michael Farrar as its senior vice president/chief operating officer.In this newly created role, Farrar will be responsible for strengthening the organization's efforts in research, education, innovation, and outreach, ensuring that UCAR delivers the highest quality services to its staff and to the National Center for Atmospheric Research (NCAR). UCAR manages NCAR on behalf of the National Science Foundation."UCAR's primary mission is to be an exemplary steward of the National Science Foundation's investment in NCAR," said UCAR President Antonio J. Busalacchi. "Mike's leadership experience in the National Weather Service, the U.S. Air Force, the private sector, and beyond has equipped him with the skills we need to ensure that UCAR delivers on this mission. Mike is a highly respected leader in the weather community. His familiarity with NCAR and UCAR mean he can hit the ground running. I look forward to the contributions he will make to our organization."Michael Farrar. (Photo courtesy NOAA.)Farrar comes to the organization from the National Oceanic and Atmospheric Administration, where he has worked since 2012. He currently serves as the director of the Environmental Modeling Center at NOAA’s National Weather Service (NWS), where he oversees 175 staff and more than 20 environmental models that are foundational to NWS forecast operations. Prior NOAA appointments include acting deputy director of the Office of Oceanic and Atmospheric Research, director of the NWS Meteorological Development Lab, and chief of the Program Management Branch in the NWS Office of Science and Technology.Earlier in his career, Farrar served in the U.S. Air Force, where he commanded a 110-person unit responsible for 24/7 weather operations support. After completing the executive leadership program at the Department of Defense's National Defense University, he managed a DOD program charged with sponsoring basic and applied research, largely carried out at dozens of universities, in physical science, mathematics, engineering, and social science. He retired from the Air Force in 2010 with the rank of colonel.

UCAR collaboration with The Weather Company to improve weather forecasts worldwide

BOULDER, Colo. — The University Corporation for Atmospheric Research (UCAR) today announced a new collaboration with The Weather Company, an IBM business, to improve global weather forecasting. The partnership brings together cutting-edge computer modeling developed at the National Center for Atmospheric Research (NCAR) with The Weather Company's meteorological science and IBM's advanced compute equipment."This is a major public-private partnership that will advance weather prediction and generate significant benefits for businesses making critical decisions based on weather forecasts," said UCAR President Antonio J. Busalacchi. "We are gratified that taxpayer investments in the development of weather models are now helping U.S. industries compete in the global marketplace."UCAR, a nonprofit consortium of 110 universities focused on research and training in the atmospheric and related Earth system sciences, manages NCAR on behalf of the National Science Foundation.With the new agreement, The Weather Company will develop a global forecast model based on the Model for Prediction Across Scales (MPAS), an innovative software platform developed by NCAR and the Los Alamos National Laboratory.The Model for Prediction Across Scales (MPAS) enables forecasters to combine a global view of the atmosphere with a higher-resolution view of a particular region, such as North America. (@UCAR. This image is freely available for media & nonprofit use.)MPAS offers a unique way of simulating the global atmosphere while providing users with more flexibility when focusing on specific regions of interest. Unlike traditional three-dimensional models that calculate atmospheric conditions at multiple points within a block-shaped grid, it uses a hexagonal mesh resembling a honeycomb that can be stretched wide in some regions and compressed for higher resolution in others. This enables forecasters to simultaneously capture far-flung atmospheric conditions that can influence local weather, as well as small-scale features such as vertical wind shear that can affect thunderstorms and other severe weather.Drawing on the computational power of GPUs — graphics processing units — such as those being used in a powerful new generation of IBM supercomputers, and on the expertise of NCAR and The Weather Company, the new collaboration is designed to push the capabilities of MPAS to yield more accurate forecasts with longer lead times. The results of NCAR's work will be freely available to the meteorological community. Businesses, from airlines to retailers, as well as the general public, stand to benefit.Mary Glackin, head of weather science and operations for The Weather Company, said, "As strong advocates for science, we embrace strong public-private collaborations that understand the value science brings to society, such as our continued efforts with UCAR to advance atmospheric and computational sciences.""Thanks to research funded by the National Science Foundation and other federal agencies, society is on the cusp of a new era in weather prediction, with more precise short-range forecasts as well as longer-term forecasts of seasonal weather patterns," Busalacchi said. "These forecasts are important for public health and safety, as well as enabling companies to leverage economic opportunities in ways that were never possible before."About The Weather CompanyThe Weather Company, an IBM Business, helps people make informed decisions and take action in the face of weather. The company offers weather data and insights to millions of consumers, as well as thousands of marketers and businesses via Weather’s API, its business solutions division, and its own digital products from The Weather Channel ( and Weather Underground ( webpage was last updated on July 5, 2017.

UCAR statement on U.S. withdrawal from Paris climate agreement

BOULDER, Colo. — President Donald Trump today announced he is withdrawing the United States from the Paris Agreement on climate change, a global pact signed by more than 190 countries to cut carbon dioxide emissions. He also said he would seek to renegotiate it or forge a new agreement. Antonio J. Busalacchi, the president of the University Corporation for Atmospheric Research (UCAR), issued the following statement:Today's decision to begin withdrawing from the Paris Agreement under its current terms creates new uncertainties about the future of our climate. At a time when our economic well-being and national security depend increasingly on accurate predictions of the impacts of greenhouse gas emissions, investments in climate research are even more necessary so scientists can project climate change in the new policy environment.Climate change poses major risks to food and water supplies, transportation systems, and other resources in the United States and worldwide. Rising temperatures and their impacts on weather patterns are creating additional stress at a time of international conflicts, endangering our economic and military security. If average global temperatures rise more than 2 degrees Celsius — the target of the Paris Agreement — research indicates that damaging impacts, such as sea level rise, intense heat waves and droughts, and shifts in weather patterns and storms will become more severe. With today’s decision, scientists will need to focus more attention on the potential ramifications of failing to curb emissions sufficiently to meet the 2-degree target.Nations are amassing information about future climate conditions as a necessary precondition for competing in the global marketplace. Multinational corporations are seeking to mitigate their exposure to climate risks, and if they cannot get the needed information from U.S.-funded research they will go elsewhere to get the most authoritative information. U.S. rivals, including China, are conducting vigorous climate research projects that support their economic and military investments and expand their influence worldwide. Even if the United States no longer participates in climate agreements, it cannot afford to cede climate knowledge to overseas competitors.Climate research is fundamentally nonpartisan. The work under way at the National Center for Atmospheric Research, in collaboration with our partners at government agencies, the university community, and the private sector, builds an evidence-based picture of the possible future impacts of climate change. As always, we stand ready to provide the results of our scientific inquiry to Congress and the administration in order to keep our nation secure and prosperous.Today's decision does not mean that climate change will go away. To the contrary, the heightened potential for increased greenhouse gas emissions poses a substantial threat to our communities, businesses, and military. The work by U.S. researchers — to understand and anticipate changes in our climate system and determine ways to mitigate or adapt to the potential impacts — is now more vital than ever.

UCAR statement on President Trump's budget proposal

BOULDER, Colo. — Antonio J. Busalacchi, the president of the University Corporation for Atmospheric Research (UCAR), issued the following statement about the federal budget proposal for fiscal year 2018, which the Trump administration released today following its budget blueprint in March:Today's budget proposal, which identifies the priorities of the White House, marks a major step in the months-long process by the Trump administration and Congress to  finalize the budget for the 2018 fiscal year that begins Oct. 1. UCAR is working with its partners in the Earth system science community to ensure that the government continues to invest in crucial research and scientific infrastructure that saves lives and property, supports our continued economic competitiveness, and strengthens our national security.Improved understanding of the atmosphere is crucial for our nation's resilience. Last year alone, the United States experienced 15 weather-related disasters that each reached or exceeded $1 billion in costs, including tornadoes, drought, and widespread flooding. Even routine weather events have an annual economic impact of hundreds of billions of dollars, affecting transportation, supply chain management, consumer purchasing, and virtually every other economic sector. Higher up in our atmosphere, space weather events pose an ongoing threat to GPS systems, communications networks, power grids, and other technologies that are essential for the everyday functioning of our nation.Thanks to collaborations among government agencies, universities, and the private sector, scientists are developing increasingly advanced observing instruments and computer models to better understand these threats. We are gaining the ability to predict major atmospheric and related events weeks, months, or even more than a year in advance, providing needed environmental intelligence to business, military, and public safety leaders. As U.S. competitors make major investments into better observing, understanding, and predicting the Earth system, it is more imperative than ever to continue this work in order to maintain American preeminence in the world.We are concerned that the administration's proposed cuts to research into the Earth system sciences will undermine the continued scientific progress that is so vitally needed to better protect the nation in the future from costly natural disasters. This would have serious repercussions for the U.S. economy and national security, and for the ability to protect life and property. Such funding cuts would be especially unfortunate at a time when the nation is moving to regain its position as the world leader in weather forecasting.UCAR is extremely grateful to the bipartisan majorities in the House and Senate that voted to sustain research funding in the current fiscal year. We look forward to working with Congress in the months ahead to maintain the level of funding needed in the fiscal year 2018 budget to support essential Earth system science research.

UCAR to co-anchor Colorado's Innovation Corridor

BOULDER, Colo. — The Colorado Innovation Corridor, a new platform to connect premier, federally funded labs with private industry, will be co-anchored by the University Corporation for Atmospheric Research (UCAR) and the National Renewable Energy Lab (NREL). The partnership is designed to foster economic development and job creation.UCAR and NREL will be linked to private companies through the global marketplace collaborations at FORMATIV's new World Trade Center (WTC) Denver Development in the city's River North neighborhood. FORMATIV is the Denver-based real estate development firm behind the WTC Denver Development.“The resources associated with these two labs are unlike anything else in the world," said Eric Drummond, president of global strategy and chief legal officer of FORMATIV. "We are absolutely thrilled to have them as founding partners of The Innovation Corridor."An artist's rendition of the World Trade Center Denver Development (Image courtesy FORMATIV.) UCAR manages the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation. It plays a central role in raising awareness of the value of continued federal investment in the lifesaving, economically critical work provided by the Earth systems science community, including improved forecasts of weather, water, climate, and solar storms.The Innovation Corridor will develop connections among the national labs, FORMATIV, and the private sector, providing scientists with an opportunity to demonstrate the newest technology and meet with potential business partners and investors."Private companies throughout the Front Range and beyond will now be able to harness breakthroughs by our scientists more effectively, thanks to this new partnership," said UCAR President Antonio J. Busalacchi. "The Innovation Corridor will leverage cutting-edge science in ways that will generate jobs, advance technologies needed to protect life and property, and boost U.S. competitiveness in the global economy."FORMATIV is a dynamic real estate and community development company that works to create transformative commercial and mixed-use projects. Its team focuses on building innovative business and community-based ecosystems in Denver and globally.The U.S. Department of Energy's NREL is the federal government's primary laboratory dedicated to research, development, commercialization, and deployment of renewable energy and energy efficiency technologies.Writer:David Hosansky, Manager of Media Relations

Warmer temperatures cause decline in key runoff measure

BOULDER, Colo. — Since the mid-1980s, the percentage of precipitation that becomes streamflow in the Upper Rio Grande watershed has fallen more steeply than at any point in at least 445 years, according to a new study led by the National Center for Atmospheric Research (NCAR).While this decline was driven in part by the transition from an unusually wet period to an unusually dry period, rising temperatures deepened the trend, the researchers said.The study paints a detailed picture of how temperature has affected the runoff ratio — the amount of snow and rain that actually makes it into the river — over time, and the findings could help improve water supply forecasts for the Rio Grande, which is a source of water for an estimated 5 million people.The study results also suggest that runoff ratios in the Upper Rio Grande and other neighboring snow-fed watersheds, such as the Colorado River Basin, could decline further as the climate continues to warm.Sandhill cranes in the San Luis Valley of Colorado. The mountains ringing the valley form the headwaters of the Rio Grande River, which flows south into New Mexico and along the border between Texas and Mexico. (Photo courtesy of the National Park Service.)"The most important variable for predicting streamflow is how much it has rained or snowed," said NCAR scientist Flavio Lehner, lead author of the study. "But when we looked back hundreds of years, we found that temperature has also had an important influence  — which is not currently factored into water supply forecasts. We believe that incorporating temperature in future forecasts will increase their accuracy, not only in general but also in the face of climate change."The study, published in the journal Geophysical Research Letters, was funded by the Bureau of Reclamation, Army Corps of Engineers, National Oceanic and Atmospheric Administration (NOAA), and National Science Foundation, which is NCAR's sponsor.Co-authors of the paper are Eugene Wahl, of NOAA; Andrew Wood, of NCAR; and Douglas Blatchford and Dagmar Llewellyn, both of the Bureau of Reclamation.Over-predicting water supplyBorn in the Rocky Mountains of southern Colorado, the Rio Grande cuts south across New Mexico before hooking east and forming the border between Texas and Mexico. Snow piles up on the peaks surrounding the headwaters throughout the winter, and in spring the snowpack begins to melt and feed the river.The resulting streamflow is used both by farmers and cities, including Albuquerque, New Mexico, and El Paso, Texas, and water users depend on the annual water supply forecasts to determine who gets how much of the river. The forecast is also used to determine whether additional water needs to be imported from the San Juan River, on the other side of the Continental Divide, or pumped from groundwater.Current operational streamflow forecasts depend on estimates of the amount of snow and rain that have fallen in the basin, and they assume that a particular amount of precipitation and snowpack will always yield a particular amount of streamflow.In recent years, those forecasts have tended to over-predict how much water will be available, leading to over-allocation of the river. In an effort to understand this changing dynamic, Lehner and his colleagues investigated how the relationship between precipitation and streamflow, known as the runoff ratio, has evolved over time.Precipitation vs. streamflow: Tree rings tell a new storyThe scientists used tree ring-derived streamflow data from outside of the Upper Rio Grande basin to reconstruct estimates of precipitation within the watershed stretching back to 1571. Then they combined this information with a separate streamflow reconstruction within the basin for the same period. Because these two reconstructions were independent, it allowed the research team to also estimate runoff ratio for each year: the higher the ratio, the greater the share of precipitation that was actually converted into streamflow."For the first time, we were able to take these two quantities and use them to reconstruct runoff ratios over the past 445 years," Wahl said.They found that the runoff ratio varies significantly from year to year and even decade to decade. The biggest factor associated with this variation was precipitation. When it snows less over the mountains in the headwaters of the Rio Grande, not only is less water available to become streamflow, but the runoff ratio also decreases. In other words, a smaller percentage of the snowpack becomes streamflow during drier years.But the scientists also found that another factor affected the runoff ratio: temperature. Over the last few centuries, the runoff ratio was reduced when temperatures were warmer. And the influence of temperature strengthened during drier years: When the snowpack was shallow, warm temperatures reduced the runoff ratio more than when the snowpack was deep, further exacerbating drought conditions. The low runoff ratios seen in dry years were two and a half to three times more likely when temperatures were also warmer."The effect of temperature on runoff ratio is relatively small compared to precipitation," Lehner said. "But because its greatest impact is when conditions are dry, a warmer year can make an already bad situation much worse."A number of factors may explain the influence of temperature on runoff ratio. When it's warmer, plants take up more water from the soil and more water can evaporate directly into the air. Additionally, warmer temperatures can lead snow to melt earlier in the season, when the days are shorter and the angle of the sun is lower. This causes the snow to melt more slowly, allowing the meltwater to linger in the soil and giving plants added opportunity to use it.The extensive reconstruction of historical runoff ratio in the Upper Rio Grande also revealed that the decline in runoff ratio over the last three decades is unprecedented in the historical record. The 1980s were an unusually wet period for the Upper Rio Grande, while the 2000s and 2010s have been unusually dry. Pair that with an increase in temperatures over the same period, and the decline in runoff ratio between 1986 and 2015 was unlike any other stretch of that length in the last 445 years.The graph shows changes to runoff ratio in the Upper Rio Grande over time. (Image courtesy Flavio Lehner, NCAR.) Upgrading the old approachesThis new understanding of how temperature influences runoff ratio could help improve water supply forecasts, which do not currently consider whether the upcoming months are expected to be hotter or cooler than average. The authors are now assessing the value of incorporating seasonal temperature forecasts into water supply forecasts to account for these temperature influences. The study complements a multi-year NCAR project funded by the Bureau of Reclamation and the Army Corps of Engineers that is evaluating prospects for enhancing seasonal streamflow forecasts for reservoir management.“Forecast users and stakeholders are increasingly raising questions about the reliability of forecasting techniques if climate is changing our hydrology," said Wood, who led the effort. "This study helps us think about ways to upgrade one of our oldest approaches — statistical water supply forecasting — to respond to recent trends in temperature. Our current challenge is to find ways to make sure the lessons of this work can benefit operational streamflow forecasts.” Because the existing forecasting models were calibrated on conditions in the late 1980s and 1990s, it's not surprising that they over-predicted streamflow in the drier period since 2000, Lehner said."These statistical models often assume that the climate is stable," Lehner said. "It's an assumption that sometimes works, but statistical forecasting techniques will struggle with any strong changes in hydroclimatology from decade to decade, such as the one we have just experienced."Lehner is a Postdoc Applying Climate Expertise (PACE) fellow, which is part of the Cooperative Programs for the Advancement of Earth System Science (CPAESS). CPAESS is a community program of the University Corporation for Atmospheric Research (UCAR).About the articleTitle: Assessing recent declines in Upper Rio Grande River runoff efficiency from a paleoclimate perspectiveAuthors: Flavio Lehner, Eugene R. Wahl, Andrew W. Wood, Douglas B. Blatchford, and Dagmar LlewellynJournal: Geophysical Research Letters, DOI: 10.1002/2017GL073253Writer:Laura Snider, Senior Science Writer and Public Information Officer

NCAR to develop advanced wind and solar energy forecasting system for Kuwait

BOULDER, Colo. — Expanding its work in renewable energy, the National Center for Atmospheric Research (NCAR) is launching a three-year project to develop specialized forecasts for a major wind and solar energy facility in Kuwait."We're putting our expertise and technology to work around the world," said NCAR Senior Scientist Sue Ellen Haupt, the principal investigator on the project. "This landmark project meets our mission of science in service to society."The $5.1 million project will focus on developing a system to provide detailed forecasts of wind and solar irradiance at Kuwait's planned 2-gigawatt Shagaya renewable energy plant. After NCAR develops the system, the technology will be transferred to the Kuwait Institute for Scientific Research (KISR) for day-to-day operations.Salem Al-Hajraf of KISR and Antonio J. Busalacchi of UCAR shake hands over an agreement to create a renewable energy forecasting system. Behind them are NCAR scientists (left to right): Gerry Wiener, Branko Kosovic, Sue Ellen Haupt, and William Mahoney. (©UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.)The forecasts will help Kuwait reach its goal of generating 15 percent of its energy from renewable sources by 2030. With the ability to anticipate the amount of electricity that sun and wind will produce hours to days in advance, energy operators will be able to power up or down traditional plants as needed to meet demand."This technology will provide us with important benefits," said Salem Al-Hajraf, manager of KISR's Renewable Energy Program. "We are providing green energy to the grid using abundant sources of energy, which are sun and wind."Reducing renewable energy costsWhen electric utilities integrate power from intermittent sources such as wind or solar into the grid, they temporarily reduce or shut off traditional sources such as oil or natural gas. But if weather conditions fail to come together as expected, the utility may not be able to power up traditional plants in time to meet their customer needs.To help utility managers anticipate renewable wind energy more reliably, NCAR has designed and is constantly improving a wind energy prediction system for Xcel Energy that has saved tens of millions of dollars for the utility’s customers in Colorado and nearby states. The specialized system relies on a suite of tools, including highly detailed observations of atmospheric conditions, advanced computer modeling, and artificial intelligence techniques that enable Xcel Energy to issue high-resolution forecasts for wind farm sites.With funding from the U.S. Department of Energy, NCAR has also led a national team of scientists who have developed a cutting-edge forecasting system with the potential to save the solar energy industry hundreds of millions of dollars in the United States alone through improved forecasts. The new Sun4CastTM system, unveiled last year, greatly improves predictions of clouds and other atmospheric conditions that influence the amount of energy generated by solar arrays.Adapting to new conditionsIn Kuwait, the NCAR team will build on these technologies to develop both wind and solar energy forecasts. The scientists will customize the system to predict dust storms that can blot out sunlight and damage wind turbines. They will also incorporate the influence of nearby mountain ranges and the Persian Gulf on local weather patterns."This is a great opportunity to do research into dust and other particulates, which we haven't previously needed to focus on to this extent for wind and solar energy prediction," Haupt said. "This kind of work will pay multiple dividends for energy forecasting as well as better understanding and predicting of weather in certain desert environments."Haupt and her team will collaborate with researchers at Pennsylvania State University and Solar Consulting Services in Florida, as well as with KISR."This is an exciting international partnership that will both generate significant economic benefits and advance our understanding of the atmosphere," said Antonio J. Busalacchi, president of the University Corporation for Atmospheric Research. "In addition to reducing energy costs for our partners in Kuwait, the knowledge that we gain will help us further improve weather prediction skills here in the United States."The University Corporation for Atmospheric Research is a nonprofit consortium of 110 North American colleges and universities that manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation.KISR leads and partners internationally to develop, deploy, and exploit the best science, technology, knowledge, and innovation for public and private sector clients, for the benefit of Kuwait and others facing similar challenges and opportunities. Sun4Cast is a trademark of the University Corporation for Atmospheric Research.

NCAR to host Air Quality Open House on May 3 in Boulder

BOULDER, Colo. — The National Center for Atmospheric Research (NCAR) is marking Air Quality Awareness Week with a family-friendly open house at its Mesa Lab in southwest Boulder from 5-8 p.m. on Wednesday, May 3.A "brown cloud" of smog seen over Boulder, Colorado. (©UCAR. This image is freely available for media & nonprofit use.)The free hands-on event will provide opportunities for visitors to learn about air pollution: what it is, how it's measured, what its impacts are, and how it's regulated. Visitors are encouraged to come with questions, and scientists will be on hand to provide answers, about air quality in general and Colorado's Front Range in particular."This will be everything you ever wanted to know about air quality," said Eileen Carpenter, an education specialist at the University Corporation for Atmospheric Research (UCAR), which manages NCAR. "We've partnered with organizations from around the region to bring together experts on a diverse range of air quality topics, from monitoring pollution from space to monitoring methane leaks from oil and gas operations right here on the Front Range."Partner organizations include the Colorado Department of Public Health and Environment, the Regional Air Quality Council, GO3–Global Ozone Project, the University of Colorado Environmental Engineering Program, the National Park Service, Ball Aerospace, Boulder County Public Health, and NASA.Activities will include learning how plants react to smog in NCAR's "ozone garden," exploring a mobile air monitoring lab, and participating in experiments designed to help kids understand how air pollution works. Some organizations will also be displaying the instruments they use to measure air quality, and NCAR will host an ask-a-scientist table.During the event, visitors can also check out the permanent air quality exhibit that was recently installed on the first floor of the Mesa Lab. The exhibit explains the different types of pollution — including ozone and particulates — and allows the viewer to interact with a live feed of air quality measurements taken from instruments on top of the Mesa Lab.What: NCAR Air Quality Open HouseWhere: Mesa Lab, 1850 Table Mesa Dr., Boulder, CO, 80305When: 5-8 p.m., Wednesday, May 3, 2017For more information, visit the event website. Writer:Laura Snider, Senior Science Writer and Public Information Officer

Congressional briefing on wildland fires

WASHINGTON, D.C. — Scientists and fire experts are making landmark progress in developing new tools to improve the management and prediction of wildland fires, a panel of experts said at a congressional briefing today. The developments offer the potential of better protecting vulnerable residents and property from these extreme events, as well as reducing their costs. The briefing, sponsored by the University Corporation for Atmospheric Research (UCAR), highlighted the development of new observing tools and advanced computer models to better understand wildland fires. "We're at a turning point where new technologies and advances in basic research are enabling us to tackle a major real-world problem," said UCAR President Antonio J. Busalacchi. "Federal and state agencies, firefighters, and scientists are all working together to develop a new generation of tools that will keep firefighters safer, reduce the costs of these massive conflagrations, and better safeguard lives and property."Bureau of Land Management firefighter near Burns, Oregon, in September 2011. (Photo by Dave Toney, BLM Oregon.)UCAR is a consortium of 110 universities that manages the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation. NCAR's wildland fire research includes working with Colorado on an advanced prediction system.Toll of wildland fires The costs of forest, grass, and other types of wildland fires are increasing dramatically. In 2016 alone, more than 67,000 wildfires consumed 5.5 million acres across the nation. The U.S. Forest Service spends more than $2.5 billion annually on fire management, an increase of more than 60 percent over the last decade. The total losses can run many times higher: Last year's Chimney Tops 2 fire in Gatlinburg, Tennessee, left 14 people dead and destroyed more than 2,400 structures at a cost of $500 million. "The money spent by the federal government on suppressing the fires is only a fraction of the overall costs, such as the destruction of houses and other property," said Michael Gollner, assistant professor at the University of Maryland's Department of Fire Protection Engineering. "There are more large-scale fires than there used to be, and those are the most dangerous blazes that are particularly expensive and destructive." Donald Falk, assistant professor of the University of Arizona's School of Natural Resources and the Environment, warned that decades of fire suppression coupled with drier and warmer temperatures in some regions will lead to longer fire seasons and more major fires. "The problem is not going away," he said. "It's going to get bigger, and we're going to have to live with it without breaking the bank." Wildland fires are extremely difficult to predict because they are influenced by local topography and vegetation, as well as by atmospheric conditions that, in turn, are affected by a blaze's heat and smoke. To better anticipate fire risk as well as predict a fire once it has started, scientists are harnessing new technologies. These include specialized satellite instruments and unmanned aerial vehicles to observe the blazes, as well as specialized computer models that incorporate weather-fire interactions, the density and condition of vegetation, landscape features such as elevation and topography, and the physics of fires. The researchers are working with federal and state agencies, emergency managers, and firefighters to adapt the new capabilities for real-time decision support. "Practitioners and scientists are bringing their expertise and knowledge to the table in order to create new evolutions of technology that will result in safer and more effective firefighting, enhance how we predict events and their potential impacts, and better plan for ways to prevent those wildfires we consider harmful," said Todd Richardson, state fire management officer of the Bureau of Land Management's Colorado office. "Having better guidance prior to planning your fire operations can provide critical information to the tactical operations and fire management," said William Mahoney, interim director of NCAR's Research Applications Laboratory. "Taking advantage of these important data sources and integrating these research areas provides tremendous opportunities to advance wildland fire management." The event is the latest in a series of UCAR congressional briefings that draw on expertise from the university consortium and public-private partnerships to provide insights into critical topics in the Earth system sciences. Past briefings have focused on predicting space weather, aviation weather safety, the state of the Arctic, hurricane prediction, potential impacts of El Niño, and new advances in water forecasting.


Subscribe to News