NCAR to host Air Quality Open House on May 3 in Boulder

BOULDER, Colo. — The National Center for Atmospheric Research (NCAR) is marking Air Quality Awareness Week with a family-friendly open house at its Mesa Lab in southwest Boulder from 5-8 p.m. on Wednesday, May 3.A "brown cloud" of smog seen over Boulder, Colorado. (©UCAR. This image is freely available for media & nonprofit use.)The free hands-on event will provide opportunities for visitors to learn about air pollution: what it is, how it's measured, what its impacts are, and how it's regulated. Visitors are encouraged to come with questions, and scientists will be on hand to provide answers, about air quality in general and Colorado's Front Range in particular."This will be everything you ever wanted to know about air quality," said Eileen Carpenter, an education specialist at the University Corporation for Atmospheric Research (UCAR), which manages NCAR. "We've partnered with organizations from around the region to bring together experts on a diverse range of air quality topics, from monitoring pollution from space to monitoring methane leaks from oil and gas operations right here on the Front Range."Partner organizations include the Colorado Department of Public Health and Environment, the Regional Air Quality Council, GO3–Global Ozone Project, the University of Colorado Environmental Engineering Program, the National Park Service, Ball Aerospace, Boulder County Public Health, and NASA.Activities will include learning how plants react to smog in NCAR's "ozone garden," exploring a mobile air monitoring lab, and participating in experiments designed to help kids understand how air pollution works. Some organizations will also be displaying the instruments they use to measure air quality, and NCAR will host an ask-a-scientist table.During the event, visitors can also check out the permanent air quality exhibit that was recently installed on the first floor of the Mesa Lab. The exhibit explains the different types of pollution — including ozone and particulates — and allows the viewer to interact with a live feed of air quality measurements taken from instruments on top of the Mesa Lab.What: NCAR Air Quality Open HouseWhere: Mesa Lab, 1850 Table Mesa Dr., Boulder, CO, 80305When: 5-8 p.m., Wednesday, May 3, 2017For more information, visit the event website. Writer:Laura Snider, Senior Science Writer and Public Information Officer

Congressional briefing on wildland fires

WASHINGTON, D.C. — Scientists and fire experts are making landmark progress in developing new tools to improve the management and prediction of wildland fires, a panel of experts said at a congressional briefing today. The developments offer the potential of better protecting vulnerable residents and property from these extreme events, as well as reducing their costs. The briefing, sponsored by the University Corporation for Atmospheric Research (UCAR), highlighted the development of new observing tools and advanced computer models to better understand wildland fires. "We're at a turning point where new technologies and advances in basic research are enabling us to tackle a major real-world problem," said UCAR President Antonio J. Busalacchi. "Federal and state agencies, firefighters, and scientists are all working together to develop a new generation of tools that will keep firefighters safer, reduce the costs of these massive conflagrations, and better safeguard lives and property."Bureau of Land Management firefighter near Burns, Oregon, in September 2011. (Photo by Dave Toney, BLM Oregon.)UCAR is a consortium of 110 universities that manages the National Center for Atmospheric Research (NCAR) on behalf of the National Science Foundation. NCAR's wildland fire research includes working with Colorado on an advanced prediction system.Toll of wildland fires The costs of forest, grass, and other types of wildland fires are increasing dramatically. In 2016 alone, more than 67,000 wildfires consumed 5.5 million acres across the nation. The U.S. Forest Service spends more than $2.5 billion annually on fire management, an increase of more than 60 percent over the last decade. The total losses can run many times higher: Last year's Chimney Tops 2 fire in Gatlinburg, Tennessee, left 14 people dead and destroyed more than 2,400 structures at a cost of $500 million. "The money spent by the federal government on suppressing the fires is only a fraction of the overall costs, such as the destruction of houses and other property," said Michael Gollner, assistant professor at the University of Maryland's Department of Fire Protection Engineering. "There are more large-scale fires than there used to be, and those are the most dangerous blazes that are particularly expensive and destructive." Donald Falk, assistant professor of the University of Arizona's School of Natural Resources and the Environment, warned that decades of fire suppression coupled with drier and warmer temperatures in some regions will lead to longer fire seasons and more major fires. "The problem is not going away," he said. "It's going to get bigger, and we're going to have to live with it without breaking the bank." Wildland fires are extremely difficult to predict because they are influenced by local topography and vegetation, as well as by atmospheric conditions that, in turn, are affected by a blaze's heat and smoke. To better anticipate fire risk as well as predict a fire once it has started, scientists are harnessing new technologies. These include specialized satellite instruments and unmanned aerial vehicles to observe the blazes, as well as specialized computer models that incorporate weather-fire interactions, the density and condition of vegetation, landscape features such as elevation and topography, and the physics of fires. The researchers are working with federal and state agencies, emergency managers, and firefighters to adapt the new capabilities for real-time decision support. "Practitioners and scientists are bringing their expertise and knowledge to the table in order to create new evolutions of technology that will result in safer and more effective firefighting, enhance how we predict events and their potential impacts, and better plan for ways to prevent those wildfires we consider harmful," said Todd Richardson, state fire management officer of the Bureau of Land Management's Colorado office. "Having better guidance prior to planning your fire operations can provide critical information to the tactical operations and fire management," said William Mahoney, interim director of NCAR's Research Applications Laboratory. "Taking advantage of these important data sources and integrating these research areas provides tremendous opportunities to advance wildland fire management." The event is the latest in a series of UCAR congressional briefings that draw on expertise from the university consortium and public-private partnerships to provide insights into critical topics in the Earth system sciences. Past briefings have focused on predicting space weather, aviation weather safety, the state of the Arctic, hurricane prediction, potential impacts of El Niño, and new advances in water forecasting.

Scientists link recent California droughts and floods to distinctive atmospheric waves

BOULDER, Colo. — The crippling wintertime droughts that struck California from 2013 to 2015, as well as this year's unusually wet California winter, appear to be associated with the same phenomenon: a distinctive wave pattern that emerges in the upper atmosphere and circles the globe.Scientists at the National Center for Atmospheric Research (NCAR) found in a recent study that the persistent high-pressure ridge off the west coast of North America that blocked storms from coming onshore during the winters of 2013-14 and 2014-15 was associated with the wave pattern, which they call wavenumber-5. Follow-up work showed that wavenumber-5 emerged again this winter but with its high- and low-pressure features in a different position, allowing drenching storms from the Pacific to make landfall. "This wave pattern is a global dynamic system that sometimes makes droughts or floods in California more likely to occur," said NCAR scientist Haiyan Teng, lead author of the California paper. "As we learn more, this may eventually open a new window to long-term predictability." The high- and low-pressure regions of wavenumber-5 set up in different locations during January 2014, when California was enduring a drought, and January 2017, when it was facing floods. The location of the high and low pressure regions (characterized by anticylonic vs. cyclonic upper-level air flow) can act to either suppress or enhance precipitation and storms. The black curves illustrate the jet streams that trap and focus wavenumber-5. (Image by Haiyan Teng and Grant Branstator, ©UCAR. This image is freely available for media & nonprofit use.)  The finding is part of an emerging body of research into the wave pattern that holds the promise of better understanding seasonal weather patterns in California and elsewhere. Another new paper, led by NCAR scientist Grant Branstator, examines the powerful wave pattern in more depth, analyzing the physical processes that help lead to its formation as well as its seasonal variations and how it varies in strength and location.The California study was published in the Journal of Climate while the comprehensive study into the wave patterns is appearing in the Journal of the Atmospheric Sciences. Both papers were funded by the National Science Foundation, which is NCAR's sponsor, as well as by the Department of Energy, the National Oceanic and Atmospheric Administration, and NASA.The new papers follow a 2013 study by Teng and Branstator showing that a pattern related to wavenumber-5 tended to emerge about 15-20 days before major summertime heat waves in the United States.Strong impacts on local weather systemsWavenumber-5 consists of five pairs of alternating high- and low-pressure features that encircle the globe about six miles (10 kilometers) above the ground. It is a type of atmospheric phenomenon known as a Rossby wave, a very large-scale planetary wave that can have strong impacts on local weather systems by moving heat and moisture between the tropics and higher latitudes as well as between oceanic and inland areas and by influencing where storms occur.The slow-moving Rossby waves at times become almost stationary. When they do, the result can be persistent weather patterns that often lead to droughts, floods, and heat waves. Wavenumber-5 often has this stationary quality when it emerges during the northern winter, and, as a result, is associated with a greater likelihood of persistent extreme events.To determine the degree to which the wave pattern influenced the California drought, Teng and Branstator used three specialized computer models, as well as California rainfall records and 20th century data about global atmospheric circulation patterns. The different windows into the atmosphere and precipitation patterns revealed that the formation of a ridge by the California coast is associated with the emergence of the distinctive wavenumber-5 pattern, which guides rain-producing low-pressure systems so that they travel well north of California.Over the past winter, as California was lashed by a series of intense storms, wavenumber-5 was also present, the scientists said. But the pattern had shifted over North America, replacing the high-pressure ridge off the coast with a low-pressure trough. The result was that the storms that were forced north during the drought winters were, instead, allowed to make landfall.Clues to seasonal weather patternsForecasters who predict seasonal weather patterns have largely looked to shifting sea surface temperatures in the tropical Pacific, especially changes associated with El Niño and La Niña. But during the dry winters of 2013-14 and 2014-15, those conditions varied markedly: one featured the beginning of an El Niño while the sea surface temperatures during the other were not characteristic of either El Niño or La Niña.The new research indicates that the wave pattern may provide an additional source of predictability that sometimes may be more important than the impacts of sea surface temperature changes. First, however, scientists need to better understand why and when the wave pattern emerges.In the paper published in Journal of the Atmospheric Sciences, Branstator and Teng explored the physics of the wave pattern. Using a simplified computer model of the climate system to identify the essential physical processes, the pair found that wavenumber-5 forms when strong jet streams act as wave guides, tightening the otherwise meandering Rossby wave into the signature configuration of five highs and five lows."The jets act to focus the energy," Branstator said. "When the jets are present, the energy is trapped and cannot escape." But even when the jets are present, the wavenumber-5 pattern does not always form, indicating that other forces requiring study are also at play.The scientists also searched specifically for what might have caused the wave pattern linked to the severe California drought to form. In the paper published in the Journal of Climate, the pair found that extremely heavy rainfall from December to February in certain regions of the tropical Pacific could double the probability that the extreme ridge associated with wavenumber-5 will form. The reason may have to do with the tropical rain heating parts of the upper atmosphere in such a way that favors the formation of the wavenumber-5 pattern.But the scientists cautioned that many questions remain."We need to search globally for factors that cause this wavenumber-5 behavior," Teng said, "Our studies are just the beginning of that search."About the articlesTitle: Causes of Extreme Ridges That Induce California DroughtAuthors: Haiyan Teng and Grant BranstatorJournal: Journal of Climate, DOI: 10.1175/JCLI-D-16-0524.1
Title: Tropospheric Waveguide Teleconnections and Their SeasonalityAuthors: Grant Branstator and Haiyan TengJournal: Journal of the Atmospheric Sciences, DOI: 10.1175/JAS-D-16-0305.1Writer:David Hosansky, Manager of Media Relations

UCAR praises passage of Weather Research and Forecasting Innovation Act

Update: April 18, 2017Today President Donald Trump signed H.R. 353, the "Weather Research and Forecasting Innovation Act of 2017," into law.BOULDER, Colo. — With the unanimous passage of legislation to improve weather research and prediction, Congress has taken a major step today toward strengthening the nation's resilience to severe weather and boosting U.S. economic competitiveness."This landmark legislation will save lives and property while providing business leaders with critical intelligence," said Antonio J. Busalacchi, president of the University Corporation for Atmospheric Research (UCAR). "Today's bipartisan vote underscores the enduring value of scientific research to our nation."The Weather Research and Forecasting Innovation Act is the first major weather legislation since the early 1990s. It calls for more research into subseasonal to seasonal prediction, a priority for business and community leaders who need more reliable predictions of weather patterns weeks to months in advance. The bill also will strengthen short-term weather forecasts and smooth the way for research findings to be adopted by forecasters and commercial weather companies.Antonio J. Busalacchi. (©UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.)Improved short- and long-term weather predictions have major implications for public safety and the economy. The nation experienced 15 weather and climate disasters last year that cost $1 billion dollars or more, including tornadoes and widespread flooding that left dozens dead. Even routine weather events can affect transportation, supply chain management, consumer purchasing, and other sectors, with a collective impact of hundreds of billions of dollars on the U.S. economy.Scientists at the National Center for Atmospheric Research, which is managed by UCAR on behalf of the National Science Foundation, have estimated that weather forecasts provide an annual benefit to the American public of more than $30 billion, compared with about $5 billion spent on generating U.S. weather forecasts."Research into the atmosphere provides an enormous return on investment," Busalacchi said. "Weather affects all of us, and being able to make plans based on forecasts of likely weather conditions is literally worth many billions of dollars to households and businesses."Decades of investments by federal agencies in weather research, observing systems, computer models, and supercomputing resources are dramatically advancing our understanding of how our atmosphere works. Five-day weather forecasts now are as reliable as two-day forecasts used to be, hurricane forecasts will soon extend out to seven days, and scientists are starting to find ways to project certain events, such as droughts and heat waves, a month or longer in advance.The Weather Research and Forecasting Innovation Act is designed to strengthen:forecasts of tornadoes, hurricanes, and other severe stormslong-range prediction of weather patterns, from two weeks to two years aheadcommunication of forecasts, which influences subsequent decisions by public safety officials, businesses, and the publictsunami warningsthe process of moving research into operations and commercializationThe legislation (HR 353) was introduced by Rep. Frank Lucas of Oklahoma and Sen. John Thune of South Dakota. Co-sponsors include Sen. Brian Schatz and Reps. Jim Bridenstine, Lamar Smith, Dana Rohrabacher, Chris Stewart, Aumua Amata Coleman Radewagen, and Suzanne Bonamici.The bipartisan bill authorizes spending increases at the National Oceanic and Atmospheric Administration (NOAA) for weather research focused on observations, models, and more powerful computing resources. It authorizes spending for COSMIC-2 an innovative suite of micro-satellites that will provide critical atmospheric observations, with multiagency support provided by UCAR, NOAA, the U.S. Air Force, the National Science Foundation, and Taiwan's National Space Organization. The legislation also expands commercial opportunities to provide weather data while increasing the efficiency of NOAA's weather satellite programs."We are very appreciative of the work by Senator Thune, Representative Lucas, and the many co-sponsors in the House and Senate," Busalacchi said."As the United States faces an increasingly competitive global marketplace, it needs more accurate and longer-term weather forecasts," he added. "At UCAR we look forward to working with NOAA, the Department of Defense, and the other federal agencies; the private sector; and the university community to build off of the National Science Foundation investment in basic research in this essential area."

Planetary waves, first found on Earth, are discovered on Sun

BOULDER, Colo. — The same kind of large-scale planetary waves that meander through the atmosphere high above Earth's surface may also exist on the Sun, according to a new study led by a scientist at the National Center for Atmospheric Research (NCAR).Just as the large-scale waves that form on Earth, known as Rossby waves, influence local weather patterns, the waves discovered on the Sun may be intimately tied to solar activity, including the formation of sunspots, active regions, and the eruption of solar flares."The discovery of magnetized Rossby waves on the Sun offers the tantalizing possibility that we can predict space weather much further in advance," said NCAR scientist Scott McIntosh, lead author of the paper.The study will be published next week in the journal Nature Astronomy. Co-authors are William Cramer of Yale University, Manuel Pichardo Marcano of Texas Tech University, and Robert Leamon of the University of Maryland, College Park.The research was funded by the National Science Foundation (NSF), which is NCAR's sponsor, and by NASA.An unprecedented view of the SunOn Earth, Rossby waves are associated with the path of the jet stream and the formation of low- and high-pressure systems, which in turn influence local weather events.The waves form in rotating fluids — in the atmosphere and in the oceans. Because the Sun is also rotating, and because it's made largely of plasma that acts, in some ways, like a vast magnetized ocean, the existence of Rossby-like waves should not come as a surprise, said McIntosh, who directs NCAR's High Altitude Observatory.And yet scientists have lacked the tools to distinguish this wave pattern until recently. Unlike Earth, which is scrutinized at numerous angles by satellites in space, scientists historically have been able to study the Sun from only one viewpoint: as seen from the direction of Earth.But for a brief period, from 2011 to 2014, scientists had the unprecedented opportunity to see the Sun's entire atmosphere at once. During that time, observations from NASA's Solar Dynamics Observatory (SDO), which sits between the Sun and the Earth, were supplemented by measurements from NASA's Solar TErrestrial RElations Observatory (STEREO) mission, which included two spacecraft orbiting the Sun. Collectively, the three observatories provided a 360-degree view of the Sun until contact was lost with one of the STEREO spacecraft in 2014. McIntosh and his co-authors mined the data collected during the window of full solar coverage to see if the large-scale wave patterns might emerge."By combining the data from all three satellites we can see the entire sun and that's important for studies like this because you want the measurements to all be at the same time," said Dean Pesnell, SDO project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. "They’re pushing the boundary of how we use solar data to understand the interior of the sun and where the magnetic field of the sun comes from."Coronal bright points identified in images of the Sun taken simultaenously from three distinct vantage points in space. From left, images were captured by STEREO-Behind, SDO, and STEREO-Ahead. (Image courtesy Scott McIntosh, NCAR.)Finding waves in the dataThe team used images taken by instruments on SDO and STEREO to identify and track coronal bright points. These small bright features dot the entire face of the Sun and have been used to track motions deeper in the solar atmosphere.The scientists plotted the combined data on Hovmöller diagrams, a diagnostic tool developed by meteorologists to highlight the role of waves in Earth's atmosphere. What emerged from the analysis were bands of magnetized activity that propagate slowly across the Sun — just like the Rossby waves found on Earth.The discovery could link a range of solar phenomena that are also related to the Sun's magnetic field, including the formation of sunspots, their lifetimes, and the origin of the Sun’s 11-year solar cycle. "It's possible that it's all tied together, but we needed to have a global perspective to see that," McIntosh said. "We believe that people have been observing the impacts of these Rossby-like waves for decades, but haven't been able to put the whole picture together."With a new understanding of what the big picture might really look like, scientists could take a step closer to predicting the Sun's behavior."The discovery of Rossby-like waves on the Sun could be important for the prediction of solar storms, the main drivers of space weather effects on Earth," said Ilia Roussev, program director in NSF's Division of Atmospheric and Geospace Sciences.  "Bad weather in space can hinder or damage satellite operations, and communication and navigation systems, as well as cause power-grid outages leading to tremendous socioeconomic losses. Estimates put the cost of space weather hazards at $10 billion per year.”But to advance our predictive capabilities, scientists must first gain a better understanding of the waves and the patterns that persist on them, which would require once again having a 360-degree view of the Sun."To connect the local scale with the global scale, we need to expand our view," McIntosh said. "We need a constellation of spacecraft that circle the Sun and monitor the evolution of its global magnetic field."About the articleTitle: The detection of Rossby-like waves on the SunAuthors: Scott W. McIntosh, William J. Cramer, Manuel Pichardo Marcano, and Robert J. Leamon  Journal: Nature Astronomy, DOI: 10.1038/s41550-017-0086Writer:Laura Snider, Senior Science Writer and Public Information Officer

UCAR/NCAR statement on the passing of Matthew J. Parker

The National Center for Atmospheric Research (NCAR) and the University Corporation for Atmospheric Research (UCAR) join American Meteorological Society (AMS) colleagues and those in the broader meteorological community in mourning the passing of AMS President Matthew J. Parker, who died on March 15.This past January, Parker took over as AMS president during the society’s annual meeting in Seattle having been elected as president-elected in November 2015. He had spent much of his career, since 1989, at Savannah River National Laboratory in South Carolina. During that time, Parker rose through the ranks and was most recently senior fellow meteorologist in the Atmospheric Technologies Group.Matthew Parker (Photo courtesy of the American Meteorological Society.)“Matt was a true leader in the community who advocated for an analysis to show the value and return on investment in the weather enterprise,” said UCAR President Antonio J. Busalacchi. “Matt was a strong supporter of a more diverse and inclusive weather enterprise and while at the Department of Energy, worked to integrate all parts of the community, including the public, private, and academic sectors. This loss will be deeply felt.”NCAR Director James W. Hurrell expressed a similar sentiment, noting that Parker’s passing “is an enormous loss for the entire scientific community. Matt was a tremendous leader who was deeply committed to our field, and to AMS in particular. He will be sorely missed.”  William Mahoney, interim director of NCAR’s Research Applications Laboratory and Commissioner of AMS’s Commission on the Weather, Water, and Climate Enterprise, added: “Matt understood that creating collaboration among government, private, and academic sectors could be a powerful and effective strategy for advancing our scientific and operational capabilities. We will miss Matt’s leadership but the Commission will continue to work on implementing his vision.”See AMS’s statement here.

UCAR statement on President Trump's first budget proposal

BOULDER, Colo. — The budget process for fiscal year 2018, which begins Oct. 1, is now under way with this morning's release of President Trump's proposed budget blueprint. This proposal will be more fully developed in coming months, with the administration providing more detail and then the plan undergoing revisions during negotiations with Congress. The administration’s blueprint would increase spending for defense by $54 billion, with corresponding reductions in domestic spending, including scientific research.StatementAntonio J. Busalacchi, the president of the University Corporation for Atmospheric Research (UCAR), issued the following statement today on the administration’s plan:It is vital that the government continue to invest in crucial scientific endeavors that save lives and property, ensure our continued economic competitiveness, and strengthen our national security.Last year alone, our country experienced 15 weather-related disasters that each reached or exceeded $1 billion in costs, including tornadoes, drought, and widespread flooding that, combined, left dozens dead. Even routine weather events affect transportation, supply chain management, consumer purchasing, and other sectors in every state, with a collective impact of hundreds of billions of dollars on the U.S. economy. Higher up in our atmosphere, space weather events pose a multibillion-dollar threat to GPS systems, communications networks, power grids, and other technologies that are essential for the functioning of our nation.Strategic and necessary collaborations among government agencies, academia, and the private sector are resulting in landmark progress in short- and long-term forecasts. Scientists are gaining revolutionary new insights into the entire Earth system in ways that will lead to predictions of weather patterns and other events weeks, months, or even more than a year in advance, providing needed intelligence to political, military, and business leaders.UCAR is concerned that the proposed funding cuts to Earth system science research would derail the nation’s progress toward improved prediction and weaken the position of the United States in the world. Earth system science is an international endeavor, prioritized by both U.S. allies and competitors. Any significant cuts to science funding in the U.S. budget would threaten our preeminence, undercutting efforts to keep the public safe and our economy and military strong.As the months-long budget process moves forward, we will work with policy makers to ensure that the nation continues its robust support of essential Earth system science research.

Slower snowmelt in a warming world

BOULDER, Colo. — As the world warms, mountain snowpack will not only melt earlier, it will also melt more slowly, according to a new study by scientists at the National Center for Atmospheric Research (NCAR).The counterintuitive finding, published today in the journal Nature Climate Change, could have widespread implications for water supplies, ecosystem health, and flood risk."When snowmelt shifts earlier in the year, the snow is no longer melting under the high sun angles of late spring and early summer," said NCAR postdoctoral researcher Keith Musselman, lead author of the paper. "The Sun just isn't providing enough energy at that time of year to drive high snowmelt rates."Snowpack in the Colorado Rockies as seen from the NSF/NCAR C-130 research aircraft. (©UCAR. Photo by Carlye Calvin. This image is freely available for media & nonprofit use.)The study was funded by the National Science Foundation, NCAR's sponsor.The findings could explain recent research that suggests the average streamflow in watersheds encompassing snowy mountains may decline as the climate warms — even if the total amount of precipitation in the watershed remains unchanged. That's because the snowmelt rate can directly affect streamflow. When snowpack melts more slowly, the resulting water lingers in the soil, giving plants more opportunity to take up the moisture. Water absorbed by plants is water that doesn't make it into the stream, potentially reducing flows.Musselman first became interested in how snowmelt rates might change in the future when he was doing research in the Sierra Nevada. He noticed that shallower, lower-elevation snowpack melted earlier and more slowly than thicker, higher-elevation snowpack. The snow at cooler, higher elevations tended to stick around until early summer — when the Sun was relatively high in the sky and the days had grown longer — so when it finally started to melt, the melt was rapid.Musselman wondered if the same phenomenon would unfold in a future climate, when warmer temperatures are expected to transform higher-elevation snowpack into something that looks much more like today's lower-elevation snowpack. If so, the result would be more snow melting slowly and less snow melting quickly. To investigate the question, Musselman first confirmed what he'd noticed in the Sierra by analyzing a decade's worth of snowpack observations from 979 stations in the United States and Canada. He and his co-authors — NCAR scientists Martyn Clark, Changhai Liu, Kyoko Ikeda, and Roy Rasmussen — then simulated snowpack over the same decade using the NCAR-based Weather Research and Forecasting (WRF) model.Once they determined that the output from WRF tracked with the observations, they used simulations from the model to investigate how snowmelt rates might change in North America around the end of the century if climate change continues unabated."We found a decrease in the total volume of meltwater — which makes sense given that we expect there to be less snow overall in the future," Musselman said. "But even with this decrease, we found an increase in the amount of water produced at low melt rates and, on the flip side, a decrease in the amount of water produced at high melt rates."While the study did not investigate the range of implications that could come from the findings, Musselman said the impacts could be far-reaching. For example, a reduction in high melt rates could mean fewer spring floods, which could lower the risk of infrastructure damage but also negatively affect riparian ecosystems. Changes in the timing and amount of snowmelt runoff could also cause warmer stream temperatures, which would affect trout and other fish species, and the expected decrease in streamflow could cause shortages in urban water supplies."We hope this study motivates scientists from many other disciplines to dig into our research so we can better understand the vast implications of this projected shift in hydrologic patterns," Musselman said.About the articleTitle: Slower snowmelt in a warmer worldAuthors: Keith N. Musselman, Martyn P. Clark, Changhai Liu, Kyoko Ikeda, and Roy RasmussenJournal: Nature Climate Change, DOI: 10.1038/nclimate3225WriterLaura Snider, Senior Science Writer and Public Information OfficerFunderNational Science Foundation

Five new trustees join UCAR's board

BOULDER — Five new trustees are taking their seats this week on the board of the University Corporation for Atmospheric Research (UCAR), which manages the National Center for Atmospheric Research (NCAR).The five new trustees are: Susan Avery, president emerita of Woods Hole Oceanographic Institution; Raymond Ban, managing director of Ban & Associates; Shuyi Chen, professor of meteorology and physical oceanography at the University of Miami; Sherri Goodman, senior fellow at the Woodrow Wilson International Center; and Harlan Spence, director of the University of New Hampshire's Institute for the Study of Earth, Oceans, and Space. Each was elected by UCAR’s 110 member universities to a three-year term.The board, which determines UCAR's overall direction, elected a new chair: Everette Joseph, director of the Atmospheric Sciences Research Center at the University at Albany-SUNY. Joseph is serving his second three-year term as a trustee.At this week's meeting, UCAR President Antonio J. Busalacchi and Joseph thanked outgoing Chair of the Board Eric Betterton for his outstanding leadership, dedication, and commitment to UCAR."Eric is a tough act to follow, but I am looking forward to working with the new and returning trustees to ensure that UCAR continues to be regarded as one of the world's leading resources in the atmospheric and related Earth system sciences," Joseph said.Betterton, who has served as chair since 2015, said he was delighted to see Joseph assume the role. "Everette is exceptionally well placed to take over as chair, having served as vice chair since 2015. He has a deep understanding of UCAR, most recently evidenced by his leadership last spring of the successful search for a new UCAR president," Betterton said.Petra Klein from the University of Oklahoma will assume the vice chair role. She has served as a trustee since 2015.The UCAR member universities also re-elected two sitting trustees to additional terms: Betterton, also director of the University of Arizona's Department of Hydrology and Atmospheric Sciences; and Romy Olaisen, a vice president of enterprise ground solutions at Harris Corp. Eleven board members have continuing terms in a staggered-term system that assures continuity."I am excited to work with a board that has the depth of expertise from academia, government, and the private sector needed to help tackle the complex challenges facing Earth system science," Busalacchi said. "The work of NCAR, the UCAR university consortium, and our many partners working on weather, water, and climate has never been more important for protecting lives and property, growing the economy, and advancing national security."UCAR is a nonprofit consortium of 110 North American colleges and universities focused on research and training in the atmospheric and related Earth system sciences. UCAR manages the National Center for Atmospheric Research with sponsorship by the National Science Foundation. UCAR's community programs offer a suite of innovative resources, tools, and services in support of the consortium's education and research goals.New UCAR chairEverette Joseph has been the director of the University at Albany-SUNY's Atmospheric Sciences Research Center since 2014. His current projects include research to improve extreme weather resiliency and the development and deployment of ground-based and satellite observing systems. In his prior position as director of the Howard University Program in Atmospheric Sciences, he helped Howard become a national leader in graduating African American and Hispanic Ph.D.s in atmospheric science. Read more about Joseph.  New UCAR trustees Susan Avery is an atmospheric physicist and president emerita of the Woods Hole Oceanographic Institution, where she served as president from 2008–2015. Prior to that, Avery was a professor at the University of Colorado and held various leadership positions, including director of the Cooperative Institute for Research in Environmental Sciences (CIRES). Avery also is a past president of the American Meteorological Society and a past chair of the UCAR Board of Trustees. Read more about Avery.  Raymond Ban is managing director of Ban & Associates, which provides consulting services to weather media companies. He also serves as a consultant to The Weather Channel, where he served as an executive vice president from 2002–2009. Read more about Ban.  Shuyi Chen is a professor at the Rosenstiel School of Marine and Atmospheric Science at the University of Miami. She has also been an affiliate scientist at NCAR since 2006. She serves as vice chair of the National Academies Board of Atmospheric Science and Climate (BASC). A fellow of the American Meteorological Society, Chen is an expert in the prediction of extreme weather events, including tropical cyclones and winter storms. Read more about Chen. Sherri Goodman is a senior fellow at the Woodrow Wilson International Center, affiliated with the center's Polar Initiative, Environmental Change and Security Program, and Global Women's Leadership Initiative. She is also a senior fellow at CNA, a nonprofit research and analysis organization, where she founded the CNA Military Advisory Board. Goodman is the former president and CEO of the Consortium for Ocean Leadership and former Deputy Undersecretary of Defense (Environmental Security). Read more about Goodman. Harlan Spence has been director of the University of New Hampshire's Institute for the Study of Earth, Oceans, and Space since 2010. Prior to that, he was a professor of astronomy and department chair at Boston University. With expertise in solar research and the origins of space weather, he has worked closely with NCAR's High Altitude Observatory. He serves on several national committees providing advice to NASA and the National Science Foundation on potential space missions. Read more about Spence. 

UCAR letter on immigration order

Dear UCAR Community,As many of you are aware, President Donald Trump signed an executive order on Friday temporarily banning citizens of seven countries -- Iraq, Iran, Libya, Somalia, Sudan, Syria, and Yemen -- from entering the United States. This ban is counter to our organization’s mission and values, and I would like to reaffirm, in the strongest possible terms, our commitment and support for members of our community who may be impacted by this executive order.UCAR and NCAR are devoted to hiring, working with, and welcoming the best employees and visiting staff in the world, regardless of their country of citizenship, religion, or personal characteristics. We understand that diverse perspectives are critical for finding solutions to the complex scientific problems we are tackling today. Further, the impact of our research is global in scale, stretching beyond the boundary of our own country and it is imperative that we are able to collaborate with our colleagues around the world.While it is not yet clear how this executive order -- parts of which have been stayed by multiple federal judges -- will be implemented, UCAR is carefully monitoring the possible impacts on our staff and community members. Among these impacts will surely be an emotional toll, and I would ask that all of us at UCAR’s 110 member institutions and beyond work to support each other during this difficult and uncertain time.Sincerely,Antonio Busalacchi, UCAR President


Subscribe to News